scholarly journals Identification and Profiling of Conserved MicroRNAs in Different Developmental Stages of Crown Imperial (Fritillaria Imperialis L.) using High-throughput Sequencing

Author(s):  
Fereshteh Ahmadi Teshniz ◽  
Behrouz Shiran ◽  
Sadegh Mousavi-Fard ◽  
Hossein Fallahi ◽  
Bojana Banović Đeri

Abstract Novel strategies for improvement of plants’ ornamental and other properties relay on miRNA control of differential plant gene expression modulation. Still, in response to the same abiotic stresses, some conserved miRNA families show different expression patterns in different plant species. In parallel, the use of deep sequencing technologies reveals new levels of complexity of regulatory networks in plants through identification of new miRNAs. These are two major reasons why more studies are needed before envisioned new strategies may take their course in practical application domain. This research revealed 21 conserved miRNAs, matching 15 miRNA families, in Fritilaria imperialis. Among identified conserved miRNA families in crown imperial, miR166, miR169 and miR396 families were the most abundant ones. The expression of seven conserved miRNAs (Fim-miR156b, Fim-miR159, Fim-miR166a-5p, Fim-miR169d-5p, Fim-miR171c, Fim-miR393 and Fim-miR396e-3p) was further investigated in different tissues and three developmental stages, suggesting different roles these miRNAs have in growth and development of crown imperial. Gained knowledge from this research can open the door to find efficient ways to secure crown imperial survival, preservation and utilization and if proven useful may be applied in other plant species as well.

Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 311
Author(s):  
Ping Xu ◽  
Qinwei Guo ◽  
Xin Pang ◽  
Peng Zhang ◽  
Dejuan Kong ◽  
...  

Heat shock transcription factor (Hsf) is one of key regulators in plant abotic stress response. Although the Hsf gene family has been identified from several plant species, original and evolution relationship have been fragmented. In addition, tea, an important crop, genome sequences have been completed and function of the Hsf family genes in response to abiotic stresses was not illuminated. In this study, a total of 4208 Hsf proteins were identified within 163 plant species from green algae (Gonium pectorale) to angiosperm (monocots and dicots), which were distributed unevenly into each of plant species tested. The result indicated that Hsf originated during the early evolutionary history of chlorophytae algae and genome-wide genetic varies had occurred during the course of evolution in plant species. Phylogenetic classification of Hsf genes from the representative nine plant species into ten subfamilies, each of which contained members from different plant species, imply that gene duplication had occurred during the course of evolution. In addition, based on RNA-seq data, the member of the Hsfs showed different expression levels in the different organs and at the different developmental stages in tea. Expression patterns also showed clear differences among Camellia species, indicating that regulation of Hsf genes expression varied between organs in a species-specific manner. Furthermore, expression of most Hsfs in response to drought, cold and salt stresses, imply a possible positive regulatory role under abiotic stresses. Expression profiles of nineteen Hsf genes in response to heat stress were also analyzed by quantitative real-time RT-PCR. Several stress-responsive Hsf genes were highly regulated by heat stress treatment. In conclusion, these results lay a solid foundation for us to elucidate the evolutionary origin of plant Hsfs and Hsf functions in tea response to abiotic stresses in the future.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 633 ◽  
Author(s):  
Maria Paola Pisano ◽  
Nicole Grandi ◽  
Enzo Tramontano

Human Endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that represent a large fraction of our genome. Their transcriptional activity is finely regulated in early developmental stages and their expression is modulated in different cell types and tissues. Such activity has an impact on human physiology and pathology that is only partially understood up to date. Novel high-throughput sequencing tools have recently allowed for a great advancement in elucidating the various HERV expression patterns in different tissues as well as the mechanisms controlling their transcription, and overall, have helped in gaining better insights in an all-inclusive understanding of the impact of HERVs in biology of the host.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1367
Author(s):  
Edgar Baldemar Sepúlveda-García ◽  
José Francisco Pulido-Barajas ◽  
Ariana Arlene Huerta-Heredia ◽  
Julián Mario Peña-Castro ◽  
Renyi Liu ◽  
...  

Submergence and drought stresses are the main constraints to crop production worldwide. MicroRNAs (miRNAs) are known to play a major role in plant response to various stresses. In this study, we analyzed the expression of maize and teosinte miRNAs by high-throughput sequencing of small RNA libraries in maize and its ancestor teosinte (Zea mays ssp. parviglumis), under submergence, drought, and alternated stress. We found that the expression patterns of 67 miRNA sequences representing 23 miRNA families in maize and other plants were regulated by submergence or drought. miR159a, miR166b, miR167c, and miR169c were downregulated by submergence in both plants but more severely in maize. miR156k and miR164e were upregulated by drought in teosinte but downregulated in maize. Small RNA profiling of teosinte subject to alternate treatments with drought and submergence revealed that submergence as the first stress attenuated the response to drought, while drought being the first stress did not alter the response to submergence. The miRNAs identified herein, and their potential targets, indicate that control of development, growth, and response to oxidative stress could be crucial for adaptation and that there exists evolutionary divergence between these two subspecies in miRNA response to abiotic stresses.


2019 ◽  
Author(s):  
Jiyoung Lee ◽  
Lenwood S. Heath ◽  
Ruth Grene ◽  
Song Li

ABSTRACTComparative transcriptome analysis is the comparison of expression patterns between homologous genes in different species. Since most molecular mechanistic studies in plants have been performed in model species including Arabidopsis and rice, comparative transcriptome analysis is particularly important for functional annotation of genes in other plant species. Many biological processes, such as embryo development, are highly conserved between different plant species. The challenge is to establish one-to-one mapping of the developmental stages between two species. In this protocol, we solve this problem by converting the gene expression patterns into a co-expression network and then apply network module-finding algorithms to the cross-species co-expression network. We describe how to perform such analysis using bash scripts for preliminary data processing and R programming language, which implemented simulated annealing method for module finding. We also provide instructions on how to visualize the resulting co-expression networks across species.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10207
Author(s):  
Richard John Tiika ◽  
Jia Wei ◽  
Rui Ma ◽  
Hongshan Yang ◽  
Guangxin Cui ◽  
...  

Background The WRKY gene family, one of the major transcription factor families in plants, plays crucial regulatory roles in physiological and biological developmental processes, and the adaptation of plants to the environment. However, the systematic study of WRKY structure, expression profiling, and regulatory functions has not been extensively reported in Lycium ruthenicum, although these aspects have been comprehensively studied in most plant species. Methods In this study, the WRKY genes were identified from a L. ruthenicum transcriptome database by using bioinformatics. The identification, phylogenetic analysis, zinc-finger structures, and conserved motif prediction were extensively explored. Moreover, the expression levels of 23 selected genes with fragments per kilobase of exons per million mapped reads (FPKM) >5 were assayed during different fruit developmental stages with real-time quantitative polymerase chain reaction (RT-qPCR). Results A total of 73 putative WRKY proteins in the L. ruthenicum transcriptome database were identified and examined. Forty-four proteins with the WRKY domain were identified and divided into three major groups with several subgroups, in accordance with those in other plant species. All 44 LrWRKY proteins contained one or two conserved WRKY domains and a zinc-finger structure. Conserved motif prediction revealed conservation of the WRKY DNA-binding domain in L. ruthenicum proteins. The selected LrWRKY genes exhibited discrete expression patterns during different fruit developmental stages. Interestingly, five LrWRKYs (-20, -21, -28, -30, and -31) were expressed remarkably throughout the fruit developmental stages. Discussion Our results reveal the characteristics of the LrWRKY gene family, thus laying a foundation for further functional analysis of the WRKY family in L. ruthenicum.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jin Luo ◽  
Qiaoyun Ren ◽  
Wenge Liu ◽  
Xiaofei Qiu ◽  
Gaofeng Zhang ◽  
...  

MicroRNAs act as mRNA post-transcriptional regulators, playing important roles in cell differentiation, transcriptional regulation, growth, and development. In this study, microRNA expression profiles of Hyalomma anatolicum anatolicum ticks at different developmental stages were detected by high-throughput sequencing and functionally assessed. In total, 2,585,169, 1,252,678, 1,558,217, and 1,155,283 unique reads were obtained from eggs, larvae, nymphs, and adults, respectively, with 42, 46, 45, and 41 conserved microRNAs in these stages, respectively. Using eggs as a control, 48, 43, and 39 microRNAs were upregulated, and 3, 10, and 9 were downregulated in larvae, nymphs, and adults, respectively. MicroRNA-1 (miR-1) was expressed in high abundance throughout Ha. anatolicum development, with an average of nearly one million transcripts, and it is highly conserved among tick species. Quantitative real-time PCR (qPCR) showed that miR-1 expression gradually increased with tick development, reaching the highest level at engorgement. Differential tissue expression was detected, with significantly higher levels in the salivary glands and epidermis than in the midgut. Inhibition assays showed no significant change in body weight or spawning time or amount between experimental and control groups, but there was a significant difference (p < 0.01) in engorgement time. With miR-1 inhibition, ticks displayed obvious deformities during later development. To more fully explain the microRNA mechanism of action, the miR-1 cluster was analyzed according to the target gene; members that jointly act on Hsp60 include miR-5, miR-994, miR-969, and miR-1011. Therefore, microRNAs are critical for normal tick development, and the primary structure of the mature sequence of miR-1 is highly conserved. Nonetheless, different developmental stages and tissues show different expression patterns, with a certain role in prolonging feeding. miR-1, together with other cluster members, regulates mRNA function and may be used as a molecular marker for species origin, evolution analysis, and internal reference gene selection.


2018 ◽  
Author(s):  
Yongkai Li ◽  
Xiaojie Cheng ◽  
Yaqin Fu ◽  
Qinqin Wu ◽  
Yuli Guo ◽  
...  

Cell walls play an important role in the structure and morphology of plants as well as stress response, including various biotic and abiotic stresses. Although the comprehensive analysis of genes involved in cellulose synthase have been performed in model plants, such as Arabidopsis thaliana and rice, information regarding cellulose synthase-like (Csl) genes in maize is extremely limited. In this study, a total of 56 members of Csl gene family were identified in maize genome, which were classified into six subfamilies. Analysis of gene structure and conserved motif indicated functional similarities among the ZmCsl proteins within the same subfamily. Additionally, the 56 ZmCsl genes were dispersed on 10 chromosomes. The expression patterns of ZmCsl genes in different tissues using the transcriptome data revealed that most of ZmCsl genes had a relatively high expression in root and tassel tissues. Moreover, the expression profiles of ZmCsl genes under drought and re-watering indicated that the expression of ZmCsl genes were mainly responsive to early stage of drought stress. The protein-protein interaction network of ZmCsl genes proposed some potential interacted proteins. The data presented a comprehensive survey of Csl gene family in maize. The detailed description of maize Csl genes will be beneficial to understand their structural, functional, and evolutionary features. Importantly, we have described the differential expression profiles of these members across different tissues and under drought. This information will provide an important foundation for studying the roles of these ZmCsl genes in response to biotic and abiotic stresses.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yiyang Liu ◽  
Jiao Zhu ◽  
Sheng Sun ◽  
Feng Cui ◽  
Yan Han ◽  
...  

Abstract Background Posttranslational modification of proteins by small ubiquitin like modifier (SUMO) proteins play an important role during the developmental process and in response to abiotic stresses in plants. However, little is known about SUMOylation in peanut (Arachis hypogaea L.), one of the world’s major food legume crops. In this study, we characterized the SUMOylation system from the diploid progenitor genomes of peanut, Arachis duranensis (AA) and Arachis ipaensis (BB). Results Genome-wide analysis revealed the presence of 40 SUMO system genes in A. duranensis and A. ipaensis. Our results showed that peanut also encodes a novel class II isotype of the SCE1, which was previously reported to be uniquely present in cereals. RNA-seq data showed that the core components of the SUMOylation cascade SUMO1/2 and SCE1 genes exhibited pod-specific expression patterns, implying coordinated regulation during pod development. Furthermore, both transcripts and conjugate profiles revealed that SUMOylation has significant roles during the pod development. Moreover, dynamic changes in the SUMO conjugates were observed in response to abiotic stresses. Conclusions The identification and organization of peanut SUMO system revealed SUMOylation has important roles during stress defense and pod development. The present study will serve as a resource for providing new strategies to enhance agronomic yield and reveal the mechanism of peanut pod development.


2019 ◽  
Vol 20 (2) ◽  
pp. 251 ◽  
Author(s):  
Jiaming Li ◽  
Minghui Zhang ◽  
Jian Sun ◽  
Xinrui Mao ◽  
Jing Wang ◽  
...  

Trihelix transcription factors play a role in plant growth, development and various stress responses. Here, we identified 41 trihelix family genes in the rice genome. These OsMSLs (Myb/SANT-LIKE) were located on twelve chromosomes. Synteny analysis indicated only six duplicated gene pairs in the rice trihelix family. Phylogenetic analysis of these OsMSLs and the trihelix genes from other species divided them into five clusters. OsMSLs from different groups significantly diverged in terms of gene structure and conserved functional domains. However, all OsMSLs contained the same five cis-elements. Some of these were responsive to light and dehydration stress. All OsMSLs expressed in four tissues and six developmental stages of rice but with different expression patterns. Quantitative real-time PCR analysis revealed that the OsMSLs responded to abiotic stresses including drought and high salt stress and stress signal molecule including ABA (abscisic acid), hydrogen peroxide. OsMSL39 were simultaneously expressed under all treatments, while OsMSL28 showed high expression under hydrogen peroxide, drought, and high salt treatments. Moreover, OsMSL16/27/33 displayed significant expression under ABA and drought treatments. Nevertheless, their responses were regulated by light. The expression levels of the 12 chosen OsMSLs differed between light and dark conditions. In conclusion, our results helped elucidate the biological functions of rice trihelix genes and provided a theoretical basis for further characterizing their biological roles in responding to abiotic stresses.


2018 ◽  
Vol 19 (8) ◽  
pp. 2384 ◽  
Author(s):  
Na An ◽  
Sheng Fan ◽  
Yang Yang ◽  
Xilong Chen ◽  
Feng Dong ◽  
...  

Grafting can improve the agricultural traits of crop plants, especially fruit trees. However, the regulatory networks and differentially expressed microRNAs (miRNAs) related to grafting in apple remain unclear. Herein, we conducted high-throughput sequencing and identified differentially expressed miRNAs among self-rooted Fuji, self-rooted M9, and grafted Fuji/M9. We analyzed the flowering rate, leaf morphology, and nutrient and carbohydrate contents in the three materials. The flowering rate, element and carbohydrate contents, and expression levels of flowering genes were higher in Fuji/M9 than in Fuji. We detected 206 known miRNAs and 976 novel miRNAs in the three materials, and identified those that were up- or downregulated in response to grafting. miR156 was most abundant in Fuji, followed by Fuji/M9, and then self-rooted M9, while miR172 was most abundant in M9, followed by Fuji/M9, and then Fuji. These expression patterns suggest that that these miRNAs were related to grafting. A Gene Ontology (GO) analysis showed that the differentially expressed miRNAs controlled genes involved in various biological processes, including cellular biosynthesis and metabolism. The expression of differentially expressed miRNAs and flowering-related genes was verified by qRT-PCR. Altogether, this comprehensive analysis of miRNAs related to grafting provides valuable information for breeding and grafting of apple and other fruit trees.


Sign in / Sign up

Export Citation Format

Share Document