scholarly journals Identification of Candidate Genes Involved in Fruit Ripening and Crispness Retention Through Transcriptome Analyses of a ‘Honeycrisp’ Population

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1335
Author(s):  
Hsueh-Yuan Chang ◽  
Cindy B. S. Tong

Crispness retention is a postharvest trait that fruit of the ’Honeycrisp’ apple and some of its progeny possess. To investigate the molecular mechanisms of crispness retention, progeny individuals derived from a ’Honeycrisp’ × MN1764 population with fruit that either retain crispness (named “Retain”), lose crispness (named “Lose”), or that are not crisp at harvest (named “Non-crisp”) were selected for transcriptomic comparisons. Differentially expressed genes (DEGs) were identified using RNA-Seq, and the expression levels of the DEGs were validated using nCounter®. Functional annotation of the DEGs revealed distinct ripening behaviors between fruit of the “Retain” and “Non-crisp” individuals, characterized by opposing expression patterns of auxin- and ethylene-related genes. However, both types of genes were highly expressed in the fruit of “Lose” individuals and ’Honeycrisp’, which led to the potential involvements of genes encoding auxin-conjugating enzyme (GH3), ubiquitin ligase (ETO), and jasmonate O-methyltransferase (JMT) in regulating fruit ripening. Cell wall-related genes also differentiated the phenotypic groups; greater numbers of cell wall synthesis genes were highly expressed in fruit of the “Retain” individuals and ’Honeycrisp’ when compared with “Non-crisp” individuals and MN1764. On the other hand, the phenotypic differences between fruit of the “Retain” and “Lose” individuals could be attributed to the functioning of fewer cell wall-modifying genes. A cell wall-modifying gene, MdXTH, was consistently identified as differentially expressed in those fruit over two years in this study, so is a major candidate for crispness retention.

2019 ◽  
Vol 20 (10) ◽  
pp. 2391 ◽  
Author(s):  
Jiayang Xu ◽  
Qiansi Chen ◽  
Pingping Liu ◽  
Wei Jia ◽  
Zheng Chen ◽  
...  

Salinity is one of the most severe forms of abiotic stress and affects crop yields worldwide. Plants respond to salinity stress via a sophisticated mechanism at the physiological, transcriptional and metabolic levels. However, the molecular regulatory networks involved in salt and alkali tolerance have not yet been elucidated. We developed an RNA-seq technique to perform mRNA and small RNA (sRNA) sequencing of plants under salt (NaCl) and alkali (NaHCO3) stress in tobacco. Overall, 8064 differentially expressed genes (DEGs) and 33 differentially expressed microRNAs (DE miRNAs) were identified in response to salt and alkali stress. A total of 1578 overlapping DEGs, which exhibit the same expression patterns and are involved in ion channel, aquaporin (AQP) and antioxidant activities, were identified. Furthermore, genes involved in several biological processes, such as “photosynthesis” and “starch and sucrose metabolism,” were specifically enriched under NaHCO3 treatment. We also identified 15 and 22 miRNAs that were differentially expressed in response to NaCl and NaHCO3, respectively. Analysis of inverse correlations between miRNAs and target mRNAs revealed 26 mRNA-miRNA interactions under NaCl treatment and 139 mRNA-miRNA interactions under NaHCO3 treatment. This study provides new insights into the molecular mechanisms underlying the response of tobacco to salinity stress.


2020 ◽  
Author(s):  
Tao Xie ◽  
Zhiquan Cai ◽  
Aiping Luan ◽  
Wei Zhang ◽  
Jing Wu ◽  
...  

Abstract Background: Pineapple plant usually has a capitulum. However, a fan-shaped inflorescence was evolved in an exceptional material, having multiple crown buds. In order to reveal the molecular mechanisms of the formation of the fan-shaped inflorescence, fruit traits and the transcriptional differences between a fan-shaped inflorescence (FI) and a capitulum inflorescence (CI) pineapples were analyzed in the three tissues, i.e., the flower stem apex (FIs and CIs), the base of the inflorescence (FIb and CIb), and the inflorescence axis (FIa and CIa).Results: Except for a clear differentiation of inflorescence morphology, no significant differences in the structure of inflorescence organs and the main nutritional components (soluble solids, soluble sugar, titratable acid, and VC) in fruits were found between the two pineapples. Between the fan- and capitulum-shaped inflorescences, a total of 5370 differentially expressed genes (DEGs) were identified across the three tissues; and 3142, 2526 and 2255 DEGs were found in the flower stem apex, the base of the inflorescence, and the inflorescence axis, respectively. Of these genes, there were 489 overlapping DEGs in all three tissue comparisons. In addition, 5769 DEGs were identified between different tissues within each pineapple. Functional analysis indicated between the two pineapples that 444 transcription factors (TFs) and 206 inflorescence development related genes (IDGs) were differentially expressed in at least one tissue comparison, while 45 TFs and 21 IDGs were overlapped across the 3 tissues. Among the 489 overlapping DEGs in the 3 tissue comparisons between the two pineapples, excluding the IDGs and TFs, 80 of them revealed a higher percentage of involvement in the biological processes relating to response to auxin, and reproductive processes. RNA-seq value and real-time quantitative PCR analysis exhibited the same gene expression patterns in the three tissues. Conclusions: Our result provided novel cues for understanding the molecular mechanisms of the formation of fan-shaped inflorescence in pineapple, making a valuable resource for the study of plant breeding and the speciation of the pineapples.


2018 ◽  
Vol 143 (3) ◽  
pp. 194-206 ◽  
Author(s):  
Takanori Takeuchi ◽  
Miwako Cecile Matsushita ◽  
Soichiro Nishiyama ◽  
Hisayo Yamane ◽  
Kiyoshi Banno ◽  
...  

Endodormancy release and the fulfillment of the chilling requirement (CR) are critical physiological processes that enable uniform blooming in fruit tree species, including apple (Malus ×domestica). However, the molecular mechanisms underlying these traits have not been fully characterized. The objective of this study was to identify potential master regulators of endodormancy release and the CR in apple. We conducted RNA-Sequencing (RNA-seq) analyses and narrowed down the number of candidates among the differentially expressed genes (DEGs) based on the following two strict screening criteria: 1) the gene must be differentially expressed between endodormant and ecodormant buds under different environmental conditions and 2) the gene must exhibit chill unit (CU)–correlated expression. The results of our cluster analysis suggested that global expression patterns varied between field-grown buds and continuously chilled buds, even though they were exposed to similar amounts of chilling and were expected to have a similar dormancy status. Consequently, our strict selection strategy resulted in narrowing down the number of possible candidates and identified the DEGs strongly associated with the transition between dormancy stages. The genes included four transcription factor genes, PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), FLOWERING LOCUS C (FLC)-LIKE, APETALLA2 (AP2)/ETHYLENE-RESPONSIVE 113 (ERF113), and MYC2. Their expressions were upregulated during endodormancy release, and were correlated with the CU, suggesting that these transcription factors are closely associated with chilling-mediated endodormancy release in apple.


2019 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Na Chu ◽  
Jing-Ru Zhou ◽  
Hua-Ying Fu ◽  
Mei-Ting Huang ◽  
Hui-Li Zhang ◽  
...  

Red stripe disease in sugarcane caused by Acidovorax avenae subsp. avenae (Aaa) is related to serious global losses in yield. However, the underlying molecular mechanisms associated with responses of sugarcane plants to infection by this pathogen remain largely unknown. Here, we used Illumina RNA-sequencing (RNA-seq) to perform large-scale transcriptome sequencing of two sugarcane cultivars to contrast gene expression patterns of plants between Aaa and mock inoculations, and identify key genes and pathways involved in sugarcane defense responses to Aaa infection. At 0–72 hours post-inoculation (hpi) of the red stripe disease-resistant cultivar ROC22, a total of 18,689 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples. Of these, 8498 and 10,196 genes were up- and downregulated, respectively. In MT11-610, which is susceptible to red stripe disease, 15,782 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples and 8807 and 6984 genes were up- and downregulated, respectively. The genes that were differentially expressed following Aaa inoculation were mainly involved in photosynthesis and carbon metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, and plant–pathogen interaction pathways. Further, qRT-PCR and RNA-seq used for additional validation of 12 differentially expressed genes (DEGs) showed that eight genes in particular were highly expressed in ROC22. These eight genes participated in the biosynthesis of lignin and coumarin, as well as signal transduction by salicylic acid, jasmonic acid, ethylene, and mitogen-activated protein kinase (MAPK), suggesting that they play essential roles in sugarcane resistance to Aaa. Collectively, our results characterized the sugarcane transcriptome during early infection with Aaa, thereby providing insights into the molecular mechanisms responsible for bacterial tolerance.


Author(s):  
Guohong Zeng ◽  
Jin Li ◽  
Yuxiu Ma ◽  
Qian Pu ◽  
Tian Xiao ◽  
...  

AbstractSaponins are kinds of antifungal compounds produced by Panax notoginseng to resist invasion by pathogens. Ilyonectria mors-panacis G3B was the dominant pathogen inducing root rot of P. notoginseng, and the abilities to detoxify saponins were the key to infect P. notoginseng successfully. To research the molecular mechanisms of detoxifying saponins in I. mors-panacis G3B, we used high-throughput RNA-Seq to identify 557 and 1519 differential expression genes (DEGs) in I. mors-panacis G3B with saponins treatments for 4H (Hours) and 12H (Hours) compared with no saponins treatments, respectively. Among these DEGs, we found 93 genes which were simultaneously highly expressed in I. mors-panacis G3B with saponins treatments for 4H and 12H, they mainly belong to genes encoding transporters, glycoside hydrolases, oxidation–reduction enzymes, transcription factors and so on. In addition, there were 21 putative PHI (Pathogen–Host Interaction) genes out of those 93 up-regulated genes. In this report, we analyzed virulence-associated genes in I. mors-panacis G3B which may be related to detoxifying saponins to infect P. notoginseng successfully. They provided an excellent starting point for in-depth study on pathogenicity of I. mors-panacis G3B and developed appropriate root rot disease management strategies in the future.


2017 ◽  
Vol 3 (5) ◽  
pp. 190-198 ◽  
Author(s):  
Wei WEI ◽  
Zhongqi FAN ◽  
Jianye CHEN ◽  
Jianfei KUANG ◽  
Wangjin LU ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Songbai Yang ◽  
Xiaolong Zhou ◽  
Yue Pei ◽  
Han Wang ◽  
Ke He ◽  
...  

Estrus is an important factor for the fecundity of sows, and it is involved in ovulation and hormone secretion in ovaries. To better understand the molecular mechanisms of porcine estrus, the expression patterns of ovarian mRNA at proestrus and estrus stages were analyzed using RNA sequencing technology. A total of 2,167 differentially expressed genes (DEGs) were identified (P≤0.05, log2  Ratio≥1), of which 784 were upregulated and 1,383 were downregulated in the estrus compared with the proestrus group. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in the cellular process, single-organism process, cell and cell part, and binding and metabolic process. In addition, a pathway analysis showed that these DEGs were significantly enriched in 33 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including cell adhesion molecules, ECM-receptor interaction, and cytokine-cytokine receptor interaction. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) confirmed the differential expression of 10 selected DEGs. Many of the novel candidate genes identified in this study will be valuable for understanding the molecular mechanisms of the sow estrous cycle.


2020 ◽  
Vol 15 (1) ◽  
pp. 753-762
Author(s):  
Delong Kan ◽  
Di Zhao ◽  
Pengfei Duan

AbstractStudies have shown that abundant and various flavonoids accumulate in chili pepper (Capsicum), but there are few reports on the genes that govern chili pepper flavonoid biosynthesis. Here, we report the comprehensive identification of genes encoding type III polyketide synthase (PKS), an important enzyme catalyzing the generation of flavonoid backbones. In total, 13, 14 and 13 type III PKS genes were identified in each genome of C. annuum, C. chinense and C. baccatum, respectively. The phylogeny topology of Capsicum PKSs is similar to those in other plants, as it showed two classes of genes. Within each class, clades can be further identified. Class II genes likely encode chalcone synthase (CHS) as they are placed together with the Arabidopsis CHS gene, which experienced extensive expansions in the genomes of Capsicum. Interestingly, 8 of the 11 Class II genes form three clusters in the genome of C. annuum, which is likely the result of tandem duplication events. Four genes are not expressed in the tissues of C. annuum, three of which are located in the clusters, indicating that a portion of genes was pseudogenized after tandem duplications. Expression of two Class I genes was complementary to each other, and all the genes in Class II were not expressed in roots of C. annuum. Two Class II genes (CA00g90790 and CA05g17060) showed upregulated expression as the chili pepper leaves matured, and two Class II genes (CA05g17060 and CA12g20070) showed downregulated expression with the maturation of fruits, consistent with flavonoid accumulation trends in chili pepper as reported previously. The identified genes, sequences, phylogeny and expression information collected in this article lay the groundwork for future studies on the molecular mechanisms of chili pepper flavonoid metabolism.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Inés González-Castellano ◽  
Chiara Manfrin ◽  
Alberto Pallavicini ◽  
Andrés Martínez-Lage

Abstract Background The common littoral shrimp Palaemon serratus is an economically important decapod resource in some European communities. Aquaculture practices prevent the genetic deterioration of wild stocks caused by overfishing and at the same time enhance the production. The biotechnological manipulation of sex-related genes has the proved potential to improve the aquaculture production but the scarcity of genomic data about P. serratus hinders these applications. RNA-Seq analysis has been performed on ovary and testis samples to generate a reference gonadal transcriptome. Differential expression analyses were conducted between three ovary and three testis samples sequenced by Illumina HiSeq 4000 PE100 to reveal sex-related genes with sex-biased or sex-specific expression patterns. Results A total of 224.5 and 281.1 million paired-end reads were produced from ovary and testis samples, respectively. De novo assembly of ovary and testis trimmed reads yielded a transcriptome with 39,186 transcripts. The 29.57% of the transcriptome retrieved at least one annotation and 11,087 differentially expressed genes (DEGs) were detected between ovary and testis replicates. Six thousand two hundred seven genes were up-regulated in ovaries meanwhile 4880 genes were up-regulated in testes. Candidate genes to be involved in sexual development and gonadal development processes were retrieved from the transcriptome. These sex-related genes were discussed taking into account whether they were up-regulated in ovary, up-regulated in testis or not differentially expressed between gonads and in the framework of previous findings in other crustacean species. Conclusions This is the first transcriptome analysis of P. serratus gonads using RNA-Seq technology. Interesting findings about sex-related genes from an evolutionary perspective (such as Dmrt1) and for putative future aquaculture applications (Iag or vitellogenesis genes) are reported here. We provide a valuable dataset that will facilitate further research into the reproductive biology of this shrimp.


Genes ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 362 ◽  
Author(s):  
Monise Petrucelli ◽  
Kamila Peronni ◽  
Pablo Sanches ◽  
Tatiana Komoto ◽  
Josie Matsuda ◽  
...  

The dermatophyte Trichophyton rubrum is the major fungal pathogen of skin, hair, and nails that uses keratinized substrates as the primary nutrients during infection. Few strategies are available that permit a better understanding of the molecular mechanisms involved in the interaction of T. rubrum with the host because of the limitations of models mimicking this interaction. Dual RNA-seq is a powerful tool to unravel this complex interaction since it enables simultaneous evaluation of the transcriptome of two organisms. Using this technology in an in vitro model of co-culture, this study evaluated the transcriptional profile of genes involved in fungus-host interactions in 24 h. Our data demonstrated the induction of glyoxylate cycle genes, ERG6 and TERG_00916, which encodes a carboxylic acid transporter that may improve the assimilation of nutrients and fungal survival in the host. Furthermore, genes encoding keratinolytic proteases were also induced. In human keratinocytes (HaCat) cells, the SLC11A1, RNASE7, and CSF2 genes were induced and the products of these genes are known to have antimicrobial activity. In addition, the FLG and KRT1 genes involved in the epithelial barrier integrity were inhibited. This analysis showed the modulation of important genes involved in T. rubrum–host interaction, which could represent potential antifungal targets for the treatment of dermatophytoses.


Sign in / Sign up

Export Citation Format

Share Document