scholarly journals Further Exploration of Sucrose-Citric Acid Adhesive: Synthesis and Application on Plywood

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1875 ◽  
Author(s):  
Shijing Sun ◽  
Zhongyuan Zhao ◽  
Kenji Umemura

The development of eco-friendly adhesives is a major research direction in the wood-based material industry. Previous research has already demonstrated the mixture of sucrose and citric acid could be utilized as an adhesive for the manufacture of particleboard. Herein, based on the chemical characteristics of sucrose, a synthesized sucrose-citric acid (SC) adhesive was prepared, featuring suitable viscosity and high solid content. The investigation of synthesis conditions on the bond performance showed that the optimal mass proportion between sucrose and citric acid was 25/75, the synthesis temperature was 100 °C, and the synthesis time was 2 h. The wet shear strength of the plywood bonded with SC adhesive, which was synthesized at optimal conditions and satisfied the China National Standard GB/T 9846-2015. The synthesis mechanism was studied by both 13C NMR analysis and HPLC, and the chemical composition manifesting caramelization reaction occurred during the synthesis process. The results of ATR FT-IR indicated the formation of a furan ring, carbonyl, and ether groups in the cured insoluble matter of the SC adhesive, which indicated dehydration condensation as the reaction mechanism between sucrose and citric acid.

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4078 ◽  
Author(s):  
Shijing Sun ◽  
Min Zhang ◽  
Kenji Umemura ◽  
Zhongyuan Zhao

Sucrose is one of the most abundantly available renewable chemicals in the world, and it is expected to be utilized as a raw material for wood-based material products. Herein, a novel adhesion system that was based on sucrose and ammonium dihydrogen phosphate (ADP) was synthesized into an adhesive with 80% solid content, and this eco-friendly was utilized on the fabrication of plywood. The effects of the synthesis conditions on the plywood bond performance and synthesis mechanism were investigated. The optimal synthesis conditions were as follows: the mass proportion between sucrose and ADP was 90/10, the synthesis temperature was 90 °C, and the synthesis time was 3 h. The bonding performance of the plywood that was bonded by optimal SADP adhesive satisfied the GB/T 9846-2015 standard. The chemical analysis was performance tested by using High-Performance Liquid Chromatography (HPLC), Attenuated Total Reflection-Fourier Transform Infrared Spectra (ATR-FTIR), and Pyrolysis Gas Chromatography and Mass Spectrometry (Py-GC/MS) to understand the chemical transformation during the synthesis process. The chemical analysis results confirmed that the hydrolysis and conversation reaction of sucrose occurred in the synthesized SADP adhesive, and ADP promoted the pyrolysis efficiency of sucrose.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 271
Author(s):  
Guobin Zhang ◽  
Yimin Zhang ◽  
Shenxu Bao ◽  
Liuhong Zhang

NaV2O5 mesocrystals were successfully synthesized from an alkaline-stripped pentavalent vanadium solution through a novel hydrothermal hydrogen reduction process. The optimal conditions for the hydrogen partial pressure, reaction temperature, initial solution pH value, and reaction time for the pure-phase NaV2O5 synthesis were ascertained to be 4 MPa, 200 °C, 4.0, and 2 h, respectively. The synthesis time (only 2 h) was greatly shortened, by nine times, compared with the most time-saving (18 h) hydrothermal process at present. X-ray diffraction (XRD) analysis revealed that the as-prepared powders demonstrated a typical layered orthorhombic structure of NaV2O5. The purity of the as-prepared NaV2O5 reached up to 99.98%. An electrochemical test showed that the as-prepared NaV2O5 has a potential application in sodium ion batteries. According to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the as-prepared NaV2O5 powders were identified to have rod-like mesocrystals consisting of small rods which preferentially grow along the (010) direction. Furthermore, the phase transformation mechanism and crystal growth mechanism in NaV2O5 preparation were discussed systematically, based on which the synthesis mechanism of NaV2O5 was proposed as pentavalent vanadates pre-sedimentation, hydrogen reduction with dehydration, sodium ions insertion, and finally self-assembly oriented attachment. The synthesis process is characterized as time-saving and low-cost, and thus it may have great application prospects.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2578
Author(s):  
Nuruldiyanah Kamarudin ◽  
Dayang Radiah Awang Biak ◽  
Zurina Zainal Abidin ◽  
Francisco Cardona ◽  
Salit Mohd Sapuan

Heat explosions are sometimes observed during the synthesis of phenol formaldehyde (PF) resin. This scenario can be attributed to the high latent heat that was released and not dissipated leading to the occurrence of a runaway reaction. The synthesis temperature and time played important roles in controlling the heat release, hence preventing the resin from hardening during the synthesis process. This study aims to assess the rheological and viscoelasticity behaviors of the PF resin prepared using paraformaldehyde. The prepared PF resin was designed for laminate applications. The rheological behavior of the PF resin was assessed based on the different molar ratios of phenol to paraformaldehyde (P:F) mixed in the formulation. The molar ratios were set at 1.00:1.25, 1.00:1.50 and 1.00:1.75 of P to F, respectively. The rheological study was focused at specific synthesis temperatures, namely 40, 60, 80 and 100 °C. The synthesis time was observed for 240 min; changes in physical structure and viscosity of the PF resins were noted. It was observed that the viscosity values of the PF resins prepared were directly proportional to the synthesis temperature and the formaldehyde content. The PF resin also exhibited shear thickening behavior for all samples synthesized at 60 °C and above. For all PF resin samples synthesized at 60 °C and above, their viscoelasticity results indicated that the storage modulus (G′), loss modulus(G″) and tan δ are proportionally dependent on both the synthesis temperature and the formaldehyde content. Heat explosions were observed during the synthesis of PF resin at the synthesis temperature of 100 °C. This scenario can lead to possible runaway reaction which can also compromise the safety of the operators.


2020 ◽  
Vol 10 (8) ◽  
pp. 2868 ◽  
Author(s):  
Guojie Zhao ◽  
Jing Liu ◽  
Minghong Liu ◽  
Xiaobin Han ◽  
Yulong Peng ◽  
...  

High-purity solanesol can be used for pharmaceutical applications, but the current method for purifying solanesol has high cost and difficult continuous operation, and the use of molecular imprinting to purify natural products is a hot research topic of current research. Solanesol molecularly imprinted polymers were synthesized via emulsion polymerization for the first time. The morphology of the SSO-MIPs was observed with a scanning electron microscope, and the effects of the synthesis time, initiator dosage, functional monomer dosage, and cross-linking agent dosage on the adsorption effects under high-temperature and rapid synthesis conditions were discussed. The results demonstrate that the optimum synthesis conditions were a ratio of the template molecules to the functional monomers to the cross-linking agents of 1:8:30 (mol:mol:mol), 10 mg of the initiator, and a synthesis temperature of 70 °C. The imprinting factor of SSO-MIPs synthesized under the optimized process was found to reach 2.51, and the SSO-MIPs synthesized by this method exhibited a good adsorption effect, emitted less pollution during the synthesis process, and are convenient for demulsification. This research reports a reliable method for the synthesis of solanesol molecularly imprinted polymers.


2001 ◽  
Vol 16 (9) ◽  
pp. 2619-2622 ◽  
Author(s):  
K. Bellon ◽  
D. Chaumont ◽  
D. Stuerga

Forced hydrolysis preparation of zirconia sols and powders by microwave heating of zirconium tetrachloride solutions at temperatures equal to 180 °C leads in a few minutes to monodispersed nanoscale zirconia particles. Synthesis was performed in a microwave reactor called the RAMO system. This microwave reactor was designed by the authors. This flash-synthesis process combines the advantages of forced hydrolysis (homogeneous precipitation) and microwave heating (very fast heating rates). The sols and powders were characterized by x-ray diffraction,photon correlation spectroscopy (PCS), small-angle x-ray scattering, and transmission electron microscopy. Sols are colloidally stable, which means that after 6 months no sedimentation is observed and the size distribution given by PCS measurements has not changed. For all synthesis conditions (with or without HCl, zirconium salt concentration, and synthesis time), zirconia polycrystalline particles were produced. According to the different analyses, these zirconia polycrystalline particles were constituted of aggregates of small primary clusters.


2008 ◽  
Vol 47-50 ◽  
pp. 355-358 ◽  
Author(s):  
Guang Zhu ◽  
Xiao Ping Zou ◽  
Jin Cheng

A simple catalytic combustion technique for synthesizing bamboo-like carbon was presented. Ethanol was used as carbon source and fuel, copper plate as substrate, and iron salt as catalyst precursors. The as-grown black powder was characterized by means of scanning electron microscopy, and transmission electron microscopy. The results show that the morphology and microstructure of bamboo-like carbon nanotubes are affected by novel synthesis conditions, such as concentration of catalyst precursor solution, synthesis time, flame perturbations, and synthesis temperature etc.. According to observations and analysis of experimental results, a possible growth mechanism of bamboo-like carbon nanotubes is proposed and discussed.


2008 ◽  
Vol 273-276 ◽  
pp. 210-215 ◽  
Author(s):  
Sayed Hamid Reza Fatemi Nayeri ◽  
Jalil Vahdati Khaki ◽  
Mohammad Reza Aboutalebi

The starting reaction in the combustion synthesis process in TiO2-Al-C system leading to TiC+Al2O3 composite was evaluated using a combination of Differential Thermal Analysis (DTA), X-Ray Diffraction (XRD) and Transmission Electron Microscope (TEM). Double phases in 3TiO2- 4Al-3C system were milled separately and then the third phase was added according to the stoichiometric reaction for 3TiC+2Al2O3 composite formation. The combustion synthesis temperature was observed to decrease from 962 °C to 649 °C after mechanical activation of TiO2/Al mixture for 16 hr. On the contrary, the mechanical activation of Al/C and TiO2/C mixtures for 16 hr made the reaction temperature increase to 995 °C and 1024 °C, respectively. TEM and XRD patterns of as-milled powders showed that the reaction temperature changes could be due to increased TiO2 and Al interface area. In addition, DTA experiments showed that for the sample in which TiO2 and Al were mechanically activated the reaction occurred at the temperature even lower than the aluminum melting point.


2019 ◽  
Vol 57 (3A) ◽  
pp. 21
Author(s):  
Minh Truong Xuan Nguyen ◽  
Thu Thi Minh Bui ◽  
Cuc Thi Le ◽  
Linh Huu Nguyen ◽  
Y Ngoc Pham ◽  
...  

Nickel nanostructures prepared by various methods have received considerable attentions due to their numerous applications. In this study, one-dimensional nickel nanowires (NiNWs) were synthesized by the reduction of nickel (II) chloride in polyol medium. Poly (vinylpyrrolidone) (PVP) served as the surfactant and hydrazine hydrate was used as the reductant. The effects of different experimental parameters, i.e. concentration of Ni2+, volume of N2H4, concentration of PVP and reaction temperature on the formation and morphology of NiNWs were studied. The structure, composition and surface morphology of the materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the morphology as well as the diameter of NiNWs could be effectively controlled by adjusting parameters of the synthesis process.


2020 ◽  
Vol 20 (6) ◽  
pp. 1392
Author(s):  
Leny Yuliati ◽  
Mohd Hayrie Mohd Hatta ◽  
Siew Ling Lee ◽  
Hendrik Oktendy Lintang

In this work, the crystalline carbon nitride photocatalysts were synthesized by an ionothermal technique with varied synthesis temperature of 500, 550, and 600 °C, and synthesis time of 2, 4, and 6 h. Fourier transform infrared spectra showed the successful formation of the prepared carbon nitrides from their characteristic vibration peaks. X-ray diffraction patterns suggested that the same phase of poly(triazine imide) and heptazine could be observed, but with different crystallinity. The optical properties showed that different temperatures and synthesis time resulted in the different band gap energy (2.72–3.02 eV) as well as the specific surface area (24–73 m2 g–1). The transmission electron microscopy image revealed that the crystalline carbon nitride has a near-hexagonal prismatic crystallite size of about 50 nm. Analysis by high-performance liquid chromatography showed that the best photocatalytic activity for phenol degradation under solar light simulator was obtained on the crystalline carbon nitride prepared at the 550 °C for 4 h, which would be due to the high crystallinity, suitable low band gap energy (2.82 eV), and large specific surface area (73 m2 g–1). Controlling both the temperature and synthesis time is shown to be important to obtain the best physicochemical properties leading to high activity.


Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 108 ◽  
Author(s):  
Jiangya Ma ◽  
Xue Fu ◽  
Wei Xia ◽  
Kun Fu ◽  
Yi Liao

In this work, a novel cationic polyacrylamide (PAMD) was synthesized by acrylamide (AM) diallyl dimethyl ammonium chloride (DMD) and dodecyl polyglucoside (DPL) under low-pressure ultraviolet (UV) initiation. The intrinsic viscosity and cationic degree of PAMD were optimized in copolymerization. The optimum synthesis conditions that affect polymerization were determined to be solid content 30%, DPL content 25%, DMD content 30%, illumination time 135 min, and pH 9. The flocculation performance of flocculant PAMD with a high cationic degree was investigated in the purification of high-turbidity water. The flocculation mechanism was correspondingly studied and summarized based on Fourier transform-infrared (FTIR) analysis. Finally, the results of an experimental simulation using the response surface method show that 98.9% supernatant transmittance was achieved under dosage 4 mg/L, fast stirring time 20 min, pH 7, and stirring speed 320 rpm.


Sign in / Sign up

Export Citation Format

Share Document