scholarly journals Tuning Functional Behavior of Humic Acids through Interactions with Stöber Silica Nanoparticles

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 982 ◽  
Author(s):  
Giulio Pota ◽  
Virginia Venezia ◽  
Giuseppe Vitiello ◽  
Paola Di Donato ◽  
Valentina Mollo ◽  
...  

Humic acids (HA) exhibit fascinating multifunctional features, yet degradation phenomena as well as poor stability in aqueous environments strongly limit their use. Inorganic nanoparticles are emerging as a powerful interface for the development of robust HA bio-hybrid materials with enhanced chemical stability and tunable properties. Hybrid organic-inorganic SiO2/HA nanostructures were synthesized via an in-situ sol-gel route, exploiting both physical entrapment and chemical coupling. The latter was achieved through amide bond formation between carboxyl groups of HA and the amino group of 3-aminopropyltriethoxysilane (APTS), as confirmed by Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. Monodisperse hybrid nanoparticles about 90 nm in diameter were obtained in both cases, yet Electron Paramagnetic Resonance (EPR) spectroscopy highlighted the different supramolecular organization of HA. The altered HA conformation was reflected in different antioxidant properties of the conjugated nanoparticles that, however, resulted in being higher than for pure HA. Our findings proved the key role of both components in defining the morphology of the final system, as well as the efficacy of the ceramic component in templating the HA supramolecular organization and consequently tuning their functional features, thus defining a green strategy for bio-waste valorization.

2021 ◽  
Vol 11 (5) ◽  
pp. 2172
Author(s):  
Govindasamy Rajakumar ◽  
Lebao Mao ◽  
Ting Bao ◽  
Wei Wen ◽  
Shengfu Wang ◽  
...  

Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide (Y2O3) nanoparticle is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. Y2O3 has also been used as a polarizer, phosphor, laser host material, and in the optoelectronic fields for cancer therapy, biosensor, and bioimaging. Yttrium oxide nanoparticles have attractive antibacterial and antioxidant properties. This review focuses on the promising applications of Y2O3, its drawbacks, and its modifications. The synthetic methods of nanoparticles, such as sol-gel, emulsion, chemical methods, solid-state reactions, combustion, colloid reaction techniques, and hydrothermal processing, are recapitulated. Herein, we also discuss the advantages and disadvantages of Y2O3 NPs based biosensors that function through various detection modes including colorimetric, electrochemistry, and chemo luminescent regarding the detection of small organic chemicals, metal ions, and biomarkers.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 327
Author(s):  
Michał J. Sabat ◽  
Anna M. Wiśniewska-Becker ◽  
Michał Markiewicz ◽  
Katarzyna M. Marzec ◽  
Jakub Dybas ◽  
...  

Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid containing taurine conjugated with the ursodeoxycholic acid (UDCA), has been known and used from ancient times as a therapeutic compound in traditional Chinese medicine. TUDCA has recently been gaining significant interest as a neuroprotective agent, also exploited in the visual disorders. Among several mechanisms of TUDCA’s protective action, its antioxidant activity and stabilizing effect on mitochondrial and plasma membranes are considered. In this work we investigated antioxidant activity of TUDCA and its impact on structural properties of model membranes of different composition using electron paramagnetic resonance spectroscopy and the spin labeling technique. Localization of TUDCA molecules in a pure POPC bilayer has been studied using a molecular dynamics simulation (MD). The obtained results indicate that TUDCA is not an efficient singlet oxygen (1O2 (1Δg)) quencher, and the determined rate constant of its interaction with 1O2 (1Δg) is only 1.9 × 105 M−1s−1. However, in lipid oxidation process induced by a Fenton reaction, TUDCA reveals substantial antioxidant activity significantly decreasing the rate of oxygen consumption in the system studied. In addition, TUDCA induces slight, but noticeable changes in the polarity and fluidity of the investigated model membranes. The results of performed MD simulation correspond very well with the experimental results.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Montané ◽  
Karolina Matulewicz ◽  
Karolina Balik ◽  
Paulina Modrakowska ◽  
Marcin Łuczak ◽  
...  

Abstract Different nanomedicine devices that were developed during the recent years can be suitable candidates for their application in the treatment of various deadly diseases such as cancer. From all the explored devices, the nanoencapsulation of several anticancer medicines is a very promising approach to overcome some drawbacks of traditional medicines: administered dose of the drugs, drug toxicity, low solubility of drugs, uncontrolled drug delivery, resistance offered by the physiological barriers in the body to drugs, among others. In this chapter, the most important and recent progress in the encapsulation of anticancer medicines is examined: methods of preparation of distinct nanoparticles (inorganic nanoparticles, dendrimers, biopolymeric nanoparticles, polymeric micelles, liposomes, polymersomes, carbon nanotubes, quantum dots, and hybrid nanoparticles), drug loading and drug release mechanisms. Furthermore, the possible applications in cancer prevention, diagnosis, and cancer therapy of some of these nanoparticles have been highlighted.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3410
Author(s):  
Bozena Debska ◽  
Ewa Spychaj-Fabisiak ◽  
Wiesław Szulc ◽  
Renata Gaj ◽  
Magdalena Banach-Szott

The major indicator of soil fertility and productivity are humic acids (HAs) arising from decomposition of organic matter. The structure and properties of HAs depend, among others climate factors, on soil and anthropogenic factors, i.e., methods of soil management. The purpose of the research undertaken in this paper is to study humic acids resulting from the decomposition of crop residues of wheat (Triticum aestivum L.) and plant material of thuja (Thuja plicata D.Don.ex. Lamb) using electron paramagnetic resonance (EPR) spectroscopy. In the present paper, we report EPR studies carried out on two types of HAs extracted from forest soil and incubated samples of plant material (mixture of wheat straw and roots), both without soil and mixed with soil. EPR signals obtained from these samples were subjected to numerical analysis, which showed that the EPR spectra of each sample could be deconvoluted into Lorentzian and Gaussian components. It can be shown that the origin of HAs has a significant impact on the parameters of their EPR spectra. The parameters of EPR spectra of humic acids depend strongly on their origin. The HA samples isolated from forest soils are characterized by higher spin concentration and lower peak-to-peak width of EPR spectra in comparison to those of HAs incubated from plant material.


2015 ◽  
Vol 98 (4) ◽  
pp. 866-870 ◽  
Author(s):  
Violetta Kozik ◽  
Krystyna Jarzembek ◽  
Agnieszka Jędrzejowska ◽  
Andrzej Bąk ◽  
Justyna Polak ◽  
...  

Abstract Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r) = 0.90 and determination coefficient (r2) = 0.81 (P <0.05).


2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Jyoti Verma ◽  
Sumit Lal ◽  
Cornelis J.F. Van Noorden

AbstractTheranostics are a multifunctional approach using nanoparticles for combined diagnostic and therapeutic purposes. The hybrid nanoparticles that are applied for these purposes are composed of an inorganic core and an organic shell. The inorganic core acts as a contrast enhancer and the organic shell acts as a drug releaser. Hybrid nanoparticles can be conjugated with targeting moieties and systematically administered to patients to direct the nanoparticles to specific cells such as cancer cells. Theranostics have the potential to significantly improve early stage cancer diagnostics and patient survival. This review discusses preclinical and clinical advances in applications of inorganic nanoparticles for the theranostics of cancer.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1912
Author(s):  
Marianna Araújo Ferreira ◽  
Renato Ferreira de Almeida Júnior ◽  
Thiago Souza Onofre ◽  
Bruna Renata Casadei ◽  
Kleber Juvenal Silva Farias ◽  
...  

Annatto (Bixa orellana L.) is extensively used as food pigment worldwide. Recently, several studies have found it to have healing and antioxidant properties, as well as effective action against leishmaniasis. Therefore, the purpose of this study was to incorporate the oil obtained from annatto seeds into a nanostructured lipid carrier (NLC) and evaluate its physicochemical properties and biological activity against Leishmania major. Nanoparticles were prepared by the fusion-emulsification and ultrasonication method, with the components Synperonic™ PE (PL) as the surfactant, cetyl palmitate (CP) or myristyl myristate (MM) as solid lipids, annatto oil (AO) (2% and 4%, w/w) as liquid lipid and active ingredient, and ultra-pure water. Physicochemical and biological characterizations were carried out to describe the NLCs, including particle size, polydispersity index (PDI), and zeta potential (ZP) by dynamic light scattering (DLS), encapsulation efficiency (EE%), thermal behavior, X-ray diffraction (XRD), transmission electron microscopy (TEM), Electron Paramagnetic Resonance (EPR), cytotoxicity on BALB/c 3T3 fibroblasts and immortalized human keratinocyte cells, and anti-leishmaniasis activity in vitro. Nanoparticles presented an average diameter of ~200 nm (confirmed by TEM results), a PDI of less than 0.30, ZP between −12.6 and −31.2 mV, and more than 50% of AO encapsulated in NLCs. Thermal analyses demonstrated that the systems were stable at high temperatures with a decrease in crystalline structure due to the presence of AOs (confirmed by XRD). In vitro, the anti-leishmania test displayed good activity in encapsulating AO against L. major. The results indicate that the oily fraction of Bixa orellana L. in NLC systems should be evaluated as a potential therapeutic agent against leishmaniasis.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Marilina Douloudi ◽  
Eleni Nikoli ◽  
Theodora Katsika ◽  
Michalis Vardavoulias ◽  
Michael Arkas

As the field of nanoscience is rapidly evolving, interest in novel, upgraded nanomaterials with combinatory features is also inevitably increasing. Hybrid composites, offer simple, budget-conscious and environmental-friendly solutions that can cater multiple needs at the same time and be applicable in many nanotechnology-related and interdisciplinary studies. The physicochemical idiocrasies of dendritic polymers have inspired their implementation as sorbents, active ingredient carriers and templates for complex composites. Ceramics are distinguished for their mechanical superiority and absorption potential that render them ideal substrates for separation and catalysis technologies. The integration of dendritic compounds to these inorganic hosts can be achieved through chemical attachment of the organic moiety onto functionalized surfaces, impregnation and absorption inside the pores, conventional sol-gel reactions or via biomimetic mediation of dendritic matrices, inducing the formation of usually spherical hybrid nanoparticles. Alternatively, dendritic polymers can propagate from ceramic scaffolds. All these variants are covered in detail. Optimization techniques as well as established and prospected applications are also presented.


2007 ◽  
Vol 1007 ◽  
Author(s):  
Sorin Ivanovici ◽  
Christoph Rill ◽  
Claudia Feldgitscher ◽  
Guido Kickelbick

ABSTRACTHybrid materials based on polysiloxanes and metal oxides (SiO2, TiO2, ZrO2) were prepared by hydrosilation of allyl acetoacetate (AAA) modified metal alkoxides (M(OR)4; M = Ti, Zr; R = ethyl, isopropyl) or vinyl triethoxysilane with poly(dimethylsiloxane-co-hydrosiloxane) (PDMS-co-PMHS). The obtained compounds acted as single-source precursors in the sol-gel process. Various spectroscopic methods showed the complete functionalization of the polysiloxane chains with the complexes. When alcohols were used as solvents in the sol-gel process, hybrid nanoparticles were obtained, as observed by dynamic light scattering (DLS) measurements, transmission electron microscopy (TEM), and spectroscopic methods such as NMR and FT-IR.


Sign in / Sign up

Export Citation Format

Share Document