scholarly journals Polymer-Based MEMS Electromagnetic Actuator for Biomedical Application: A Review

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1184 ◽  
Author(s):  
Jumril Yunas ◽  
Budi Mulyanti ◽  
Ida Hamidah ◽  
Muzalifah Mohd Said ◽  
Roer Eka Pawinanto ◽  
...  

In this study, we present a comprehensive review of polymer-based microelectromechanical systems (MEMS) electromagnetic (EM) actuators and their implementation in the biomedical engineering field. The purpose of this review is to provide a comprehensive summary on the latest development of electromagnetically driven microactuators for biomedical application that is focused on the movable structure development made of polymers. The discussion does not only focus on the polymeric material part itself, but also covers the basic mechanism of the mechanical actuation, the state of the art of the membrane development and its application. In this review, a clear description about the scheme used to drive the micro-actuators, the concept of mechanical deformation of the movable magnetic membrane and its interaction with actuator system are described in detail. Some comparisons are made to scrutinize the advantages and disadvantages of electromagnetic MEMS actuator performance. The previous studies and explanations on the technology used to fabricate the polymer-based membrane component of the electromagnetically driven microactuators system are presented. The study on the materials and the synthesis method implemented during the fabrication process for the development of the actuators are also briefly described in this review. Furthermore, potential applications of polymer-based MEMS EM actuators in the biomedical field are also described. It is concluded that much progress has been made in the material development of the actuator. The technology trend has moved from the use of bulk magnetic material to using magnetic polymer composites. The future benefits of these compact flexible material employments will offer a wide range of potential implementation of polymer composites in wearable and portable biomedical device applications.

2021 ◽  
Vol 62 (4) ◽  
pp. 68-78
Author(s):  
Van Kien Dang ◽  
Ngoc Anh Do ◽  
Tai Tien Nguyen ◽  
Anh Duy Huynh Nguyen ◽  
Van Vi Pham ◽  
...  

Circular tunnels are the most popular shapes used in urban underground transportation systems when mechanized tunneling is used for tunnel excavation. However, circular tunnels have a small space utilization ratio. With the material development, non - circular tunnels such as sub - rectangular, U - shaped lining, etc. are now common, and their cross - section helps to improve the underground space utilization. However, there have been not many studies on the structure and the calculation method of the metro tunnels with the above cross - sections. The paper uses the analytical synthesis method to find out the advantages and disadvantages, the application conditions of the sub - rectangular shape, as well as the development direction for the complete calculation methods for this cross - section in Vietnamese conditions.


The main methods (pressing and winding) of the processing of hybrid polymer composites to obtain items were examined. Advantages and disadvantages of the methods were noted. Good combinations of different-module fibers (carbon, glass, boron, organic) in hybrid polymer materials are described, which allow one to prepare materials with high compression strength on the one hand, and to increase fracture energy of samples and impact toughness on the other hand.


2019 ◽  
Vol 70 (10) ◽  
pp. 3738-3740

The Tonsillectomy in children or adults is an intervention commonly encountered in the ENT (Ear Nose and Throat) and Head and Neck surgeon practice. The current tendency is to perform this type of surgery in major ambulatory surgery centers. Two objectives are thus pursued: first of all, the increase of the patient quality of life through the reintegration into the family as quickly as possible and secondly, the expenses associated with continuous hospitalization are reduced. Any tertiary (multidisciplinary) sleep center must ensure the complete diagnosis and treatment (including surgery) of sleep respiratory disorders. Under these conditions the selection of patients and especially the implementation of the specific protocols in order to control the postoperative complications it becomes essential. The present paper describes our experience of tonsillectomy as treatment for selected patients with chronic rhonchopathy (snoring) and mild to moderate obstructive sleep apnoea. It was presented the impact of antibiotics protocols in reducing the main morbid outcomes following tonsillectomy, in our day surgery center. The obtained results can also be a prerequisite for the integrative approach of the patients with sleep apnoea who were recommended surgical treatment. Considering the wide range of therapeutic modalities used in sleep apnoea, each with its specific advantages and disadvantages, more extensive and multicenter studies are needed. Keywords: post-tonsillectomy morbidity, day surgery center, sleep disorders


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1861
Author(s):  
Armin Mooranian ◽  
Melissa Jones ◽  
Corina Mihaela Ionescu ◽  
Daniel Walker ◽  
Susbin Raj Wagle ◽  
...  

The utilisation of bioartificial organs is of significant interest to many due to their versatility in treating a wide range of disorders. Microencapsulation has a potentially significant role in such organs. In order to utilise microcapsules, accurate characterisation and analysis is required to assess their properties and suitability. Bioartificial organs or transplantable microdevices must also account for immunogenic considerations, which will be discussed in detail. One of the most characterized cases is the investigation into a bioartificial pancreas, including using microencapsulation of islets or other cells, and will be the focus subject of this review. Overall, this review will discuss the traditional and modern technologies which are necessary for the characterisation of properties for transplantable microdevices or organs, summarizing analysis of the microcapsule itself, cells and finally a working organ. Furthermore, immunogenic considerations of such organs are another important aspect which is addressed within this review. The various techniques, methodologies, advantages, and disadvantages will all be discussed. Hence, the purpose of this review is providing an updated examination of all processes for the analysis of a working, biocompatible artificial organ.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kieran Joyce ◽  
Georgina Targa Fabra ◽  
Yagmur Bozkurt ◽  
Abhay Pandit

AbstractBiomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3497
Author(s):  
Piotr Stachak ◽  
Izabela Łukaszewska ◽  
Edyta Hebda ◽  
Krzysztof Pielichowski

Polyurethanes (PUs) are a significant group of polymeric materials that, due to their outstanding mechanical, chemical, and physical properties, are used in a wide range of applications. Conventionally, PUs are obtained in polyaddition reactions between diisocyanates and polyols. Due to the toxicity of isocyanate raw materials and their synthesis method utilizing phosgene, new cleaner synthetic routes for polyurethanes without using isocyanates have attracted increasing attention in recent years. Among different attempts to replace the conventional process, polyaddition of cyclic carbonates (CCs) and polyfunctional amines seems to be the most promising way to obtain non-isocyanate polyurethanes (NIPUs) or, more precisely, polyhydroxyurethanes (PHUs), while primary and secondary –OH groups are being formed alongside urethane linkages. Such an approach eliminates hazardous chemical compounds from the synthesis and leads to the fabrication of polymeric materials with unique and tunable properties. The main advantages include better chemical, mechanical, and thermal resistance, and the process itself is invulnerable to moisture, which is an essential technological feature. NIPUs can be modified via copolymerization or used as matrices to fabricate polymer composites with different additives, similar to their conventional counterparts. Hence, non-isocyanate polyurethanes are a new class of environmentally friendly polymeric materials. Many papers on the matter above have been published, including both original research and extensive reviews. However, they do not provide collected information on NIPU composites fabrication and processing. Hence, this review describes the latest progress in non-isocyanate polyurethane synthesis, modification, and finally processing. While focusing primarily on the carbonate/amine route, methods of obtaining NIPU are described, and their properties are presented. Ways of incorporating various compounds into NIPU matrices are characterized by the role of PHU materials in copolymeric materials or as an additive. Finally, diverse processing methods of non-isocyanate polyurethanes are presented, including electrospinning or 3D printing.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 986
Author(s):  
Md Rifat Hasan ◽  
Nepu Saha ◽  
Thomas Quaid ◽  
M. Toufiq Reza

Carbon quantum dots (CQDs) are nanomaterials with a particle size range of 2 to 10 nm. CQDs have a wide range of applications such as medical diagnostics, bio-imaging, biosensors, coatings, solar cells, and photocatalysis. Although the effect of various experimental parameters, such as the synthesis method, reaction time, etc., have been investigated, the effect of different feedstocks on CQDs has not been studied yet. In this study, CQDs were synthesized from hydroxymethylfurfural, furfural, and microcrystalline cellulose via hydrothermal carbonization at 220 °C for 30 min of residence time. The produced CQDs showed green luminescence behavior under the short-wavelength UV light. Furthermore, the optical properties of CQDs were investigated using ultraviolet-visible spectroscopy and emission spectrophotometer, while the morphology and chemical bonds of CQDs were investigated using transmission electron microscopy and Fourier-transform infrared spectroscopy, respectively. Results showed that all CQDs produced from various precursors have absorption and emission properties but these optical properties are highly dependent on the type of precursor. For instance, the mean particle sizes were 6.36 ± 0.54, 5.35 ± 0.56, and 3.94 ± 0.60 nm for the synthesized CQDs from microcrystalline cellulose, hydroxymethylfurfural, and furfural, respectively, which appeared to have similar trends in emission intensities. In addition, the synthesized CQDs experienced different functionality (e.g., C=O, O-H, C-O) resulting in different absorption behavior.


2020 ◽  
Vol 39 (1) ◽  
pp. 247-259
Author(s):  
Liu Yang ◽  
Molin Qin ◽  
Junchao Yang ◽  
Genwei Zhang ◽  
Jiana Wei

Abstract Gas chromatography (GC) is an important and widely used technique for separation and analysis in the field of analytical chemistry. Micro gas chromatography has been developed in response to the requirement for on-line analysis and on-site analysis. At the core of micro gas chromatography, microelectromechanical systems (MEMs) have the advantages of small size and low power consumption. This article introduces the stationary phases of micro columns in recent years, including polymer, carbon materials, silica, gold nanoparticles, inorganic adsorbents and ionic liquids. Preparation techniques ranging from classical coating to unusual sputtering of stationary phases are reviewed. The advantages and disadvantages of different preparation methods are analyzed. The paper introduces the separation characteristics and application progress of MEMs columns and discusses possible developments.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2295 ◽  
Author(s):  
Ryung Il Kim ◽  
Ju Ho Shin ◽  
Jong Suk Lee ◽  
Jung-Hyun Lee ◽  
Albert S. Lee ◽  
...  

A series of UV-curable hybrid composite blends containing a carboxylic acid functionalized polyimidewith varying amounts of high molecular weight (~1 K) PEG-grafted ladder-structured polysilsesquioxanes copolymerized with methacryl groups were fabricated and their structural, thermal, mechanical, and surface properties characterized. At a composite weight ratio of polyimide above 50 wt.%, a stark shift from amorphous to crystalline polyethylene glycol (PEG) phases were observed, accompanied by a drastic increase in both surface moduli and brittleness index. Moreover, fabricated composites were shown to have a wide range water contact angle, 9.8°–73.8°, attesting to the tunable surface properties of these amphiphilic hybrid polymer composites. The enhanced mechanical properties, combined with the utility of tunable surface hydrophilicity allows for the possible use of these hybrid polymer composites to be utilized as photosensitive polyimide negative photoresists for a myriad of semiconductor patterning processes.


2007 ◽  
Vol 16 (01) ◽  
pp. 113-128 ◽  
Author(s):  
FARZAD TAHAMI ◽  
BEHROOZ MOLAEI

The averaged switch modeling approach is a powerful method for representing the behavior of a wide variety of converters through equivalent circuits. The model is not linear and it is common to perform a small signal linearization about an operating point and design a linear controller. Models obtained with such method involve considerable approximation and produce results that are limited for high performance controller designs. In this paper a piecewise affine approximation technique is introduced for modeling PWM converters. This model is much more precise in predicting the dynamic response of averaged nonlinear model comparing the linear model. This paper also presents a piecewise linear controller synthesis method for PWM converters described by the proposed PWA model. The proposed controller is very efficient and effective. The design method is well suited for converters having a wide range of variation about their operating point. A simulation example on buck-boost converter is presented to demonstrate the performance of the proposed method for modeling the dynamics of the converter and designing the appropriate controller.


Sign in / Sign up

Export Citation Format

Share Document