scholarly journals An overview of research on metro tunnel lining in the sub-rectangular shape

2021 ◽  
Vol 62 (4) ◽  
pp. 68-78
Author(s):  
Van Kien Dang ◽  
Ngoc Anh Do ◽  
Tai Tien Nguyen ◽  
Anh Duy Huynh Nguyen ◽  
Van Vi Pham ◽  
...  

Circular tunnels are the most popular shapes used in urban underground transportation systems when mechanized tunneling is used for tunnel excavation. However, circular tunnels have a small space utilization ratio. With the material development, non - circular tunnels such as sub - rectangular, U - shaped lining, etc. are now common, and their cross - section helps to improve the underground space utilization. However, there have been not many studies on the structure and the calculation method of the metro tunnels with the above cross - sections. The paper uses the analytical synthesis method to find out the advantages and disadvantages, the application conditions of the sub - rectangular shape, as well as the development direction for the complete calculation methods for this cross - section in Vietnamese conditions.

2014 ◽  
Vol 621 ◽  
pp. 107-112 ◽  
Author(s):  
Bogdan Szybiński ◽  
Paweł Romanowicz

Cylindrical pressure vessels with circular cross section are commonly used in the construction of various pressure apparatus; however in certain cases other cross sections are applied. The vessels with rectangular and elliptical perpendicular cross section are of the main interest and certain formulas for their calculations are stated in the respective codes [1, 2]. In these appliances flat ends of various shapes are usually used as the vessels caps. Similarly, as for the cylindrical boilers, flat end plates with stress relieve grooves are recommended. Like in the flat ends for cylindrical pipes certain variation of the groove parameters is possible but again no clear suggestion is given how to choose the optimal groove parameters providing the minimum stress concentration [3]. In this paper the numerical analysis and optimization of the admitted by code [1] groove parameters is presented for the pipe with the rectangular cross section subjected to the internal pressure.


2012 ◽  
Vol 18 (4) ◽  
pp. 860-875 ◽  
Author(s):  
Irina Crina Anca Sandu ◽  
Stephan Schäfer ◽  
Donata Magrini ◽  
Susanna Bracci ◽  
Cecilia A. Roque

AbstractThe article presents a review of the use of cross-section and staining techniques for investigating natural organic materials (mainly proteinaceous and oil-based binders/varnishes) in painted and polychrome artworks, considering the requirements of conservation practice and routine diagnostics. The reviewed literature calls attention to the importance of using cross sections to prepare samples for optical microscopy and to different properties of embedding resins; the most appropriate instrumental conditions for optical microscopy; and the advantages and disadvantages of the most common staining techniques. A few case studies were selected to illustrate the use of autofluorescence (intrinsic fluorescence) and induced fluorescence (using specific staining tests and fluorophore-labeled antibodies) for mapping and identifying organic paint materials in cross sections. New directions of research in cross-section analyses and fluorescence-based techniques for the identification and mapping of artistic materials are presented. The complementary use of different stains on the same cross section, further exploration of intrinsic and induced fluorescence of aged versus fresh materials, and applicability of cross-section observation and staining as complementary methods for assessing the effectiveness of restoration treatments, such as cleaning and consolidation, are discussed in the last section of the article.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1184 ◽  
Author(s):  
Jumril Yunas ◽  
Budi Mulyanti ◽  
Ida Hamidah ◽  
Muzalifah Mohd Said ◽  
Roer Eka Pawinanto ◽  
...  

In this study, we present a comprehensive review of polymer-based microelectromechanical systems (MEMS) electromagnetic (EM) actuators and their implementation in the biomedical engineering field. The purpose of this review is to provide a comprehensive summary on the latest development of electromagnetically driven microactuators for biomedical application that is focused on the movable structure development made of polymers. The discussion does not only focus on the polymeric material part itself, but also covers the basic mechanism of the mechanical actuation, the state of the art of the membrane development and its application. In this review, a clear description about the scheme used to drive the micro-actuators, the concept of mechanical deformation of the movable magnetic membrane and its interaction with actuator system are described in detail. Some comparisons are made to scrutinize the advantages and disadvantages of electromagnetic MEMS actuator performance. The previous studies and explanations on the technology used to fabricate the polymer-based membrane component of the electromagnetically driven microactuators system are presented. The study on the materials and the synthesis method implemented during the fabrication process for the development of the actuators are also briefly described in this review. Furthermore, potential applications of polymer-based MEMS EM actuators in the biomedical field are also described. It is concluded that much progress has been made in the material development of the actuator. The technology trend has moved from the use of bulk magnetic material to using magnetic polymer composites. The future benefits of these compact flexible material employments will offer a wide range of potential implementation of polymer composites in wearable and portable biomedical device applications.


Author(s):  
J. P. Colson ◽  
D. H. Reneker

Polyoxymethylene (POM) crystals grow inside trioxane crystals which have been irradiated and heated to a temperature slightly below their melting point. Figure 1 shows a low magnification electron micrograph of a group of such POM crystals. Detailed examination at higher magnification showed that three distinct types of POM crystals grew in a typical sample. The three types of POM crystals were distinguished by the direction that the polymer chain axis in each crystal made with respect to the threefold axis of the trioxane crystal. These polyoxymethylene crystals were described previously.At low magnifications the three types of polymer crystals appeared as slender rods. One type had a hexagonal cross section and the other two types had rectangular cross sections, that is, they were ribbonlike.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
Xudong Weng ◽  
Peter Rez

In electron energy loss spectroscopy, quantitative chemical microanalysis is performed by comparison of the intensity under a specific inner shell edge with the corresponding partial cross section. There are two commonly used models for calculations of atomic partial cross sections, the hydrogenic model and the Hartree-Slater model. Partial cross sections could also be measured from standards of known compositions. These partial cross sections are complicated by variations in the edge shapes, such as the near edge structure (ELNES) and extended fine structures (ELEXFS). The role of these solid state effects in the partial cross sections, and the transferability of the partial cross sections from material to material, has yet to be fully explored. In this work, we consider the oxygen K edge in several oxides as oxygen is present in many materials. Since the energy window of interest is in the range of 20-100 eV, we limit ourselves to the near edge structures.


Author(s):  
P.A. Crozier

Absolute inelastic scattering cross sections or mean free paths are often used in EELS analysis for determining elemental concentrations and specimen thickness. In most instances, theoretical values must be used because there have been few attempts to determine experimental scattering cross sections from solids under the conditions of interest to electron microscopist. In addition to providing data for spectral quantitation, absolute cross section measurements yields useful information on many of the approximations which are frequently involved in EELS analysis procedures. In this paper, experimental cross sections are presented for some inner-shell edges of Al, Cu, Ag and Au.Uniform thin films of the previously mentioned materials were prepared by vacuum evaporation onto microscope cover slips. The cover slips were weighed before and after evaporation to determine the mass thickness of the films. The estimated error in this method of determining mass thickness was ±7 x 107g/cm2. The films were floated off in water and mounted on Cu grids.


Author(s):  
Stanley J. Klepeis ◽  
J.P. Benedict ◽  
R.M Anderson

The ability to prepare a cross-section of a specific semiconductor structure for both SEM and TEM analysis is vital in characterizing the smaller, more complex devices that are now being designed and manufactured. In the past, a unique sample was prepared for either SEM or TEM analysis of a structure. In choosing to do SEM, valuable and unique information was lost to TEM analysis. An alternative, the SEM examination of thinned TEM samples, was frequently made difficult by topographical artifacts introduced by mechanical polishing and lengthy ion-milling. Thus, the need to produce a TEM sample from a unique,cross-sectioned SEM sample has produced this sample preparation technique.The technique is divided into an SEM and a TEM sample preparation phase. The first four steps in the SEM phase: bulk reduction, cleaning, gluing and trimming produces a reinforced sample with the area of interest in the center of the sample. This sample is then mounted on a special SEM stud. The stud is inserted into an L-shaped holder and this holder is attached to the Klepeis polisher (see figs. 1 and 2). An SEM cross-section of the sample is then prepared by mechanically polishing the sample to the area of interest using the Klepeis polisher. The polished cross-section is cleaned and the SEM stud with the attached sample, is removed from the L-shaped holder. The stud is then inserted into the ion-miller and the sample is briefly milled (less than 2 minutes) on the polished side. The sample on the stud may then be carbon coated and placed in the SEM for analysis.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


Sign in / Sign up

Export Citation Format

Share Document