scholarly journals Recycling of Wastes Plastics and Tires from Automotive Industry

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2210
Author(s):  
Iveta Čabalová ◽  
Aleš Ház ◽  
Jozef Krilek ◽  
Tatiana Bubeníková ◽  
Ján Melicherčík ◽  
...  

Waste tires (granulate) and selected plastics from the automotive industry were evaluated by using the tertiary (pyrolysis) and quaternary (calorimetry) recovering. Pyrolysis is proving to be an environmentally friendly alternative to incineration and inefficient landfilling. Currently, the main challenges for pyrolysis of plastic waste are unavailability and inconsistent quality of feedstock, inefficient and hence costly sorting, and last but not least insufficient regulations around plastic waste management. Waste plastics and tire materials were characterized by TG/DTG analysis, Py-GC/MS analysis and calorimetry. TG analysis of the investigated materials gives the typical decomposition curves of synthetic polymers. The tested samples had the highest rate of weight loss process in the temperature range from 375 °C to 480 °C. Analytical pyrolysis of the tested polymers provided information on a wide variety of organic compounds that were released upon thermal loading of these materials without access to oxygen. Analytical pyrolysis offers valuable information on the spectrum of degradation products and their potential uses. Based on the results of calorimetry, it can be stated that the determined calorific value of selected plastic and rubber materials was ranging from 26.261 to 45.245 MJ/kg depending on the ash content and its composition.

2021 ◽  
Vol 23 ◽  
pp. 100872
Author(s):  
Dedy Hariadi ◽  
Sofyan M. Saleh ◽  
R. Anwar Yamin ◽  
Sri Aprilia
Keyword(s):  

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1173
Author(s):  
Paolo Bellassi ◽  
Gabriele Rocchetti ◽  
Lorenzo Morelli ◽  
Biancamaria Senizza ◽  
Luigi Lucini ◽  
...  

Pseudomonas fluorescens is a psychrotrophic species associated with milk spoilage because of its lipolytic and proteolytic activities. Consequently, monitoring P. fluorescens or its antecedent activity in milk is critical to preventing quality defects of the product and minimizing food waste. Therefore, in this study, untargeted metabolomics and peptidomics were used to identify the changes in milk related to P. fluorescens activity by simulating the low-temperature conditions usually found in milk during the cold chain. Both unsupervised and supervised multivariate statistical approaches showed a clear effect caused by the P. fluorescens inoculation on milk samples. Our results showed that the levels of phosphatidylglycerophosphates and glycerophospholipids were directly related to the level of contamination. In addition, our metabolomic approach allowed us to detect lipid and protein degradation products that were directly correlated with the degradative metabolism of P. fluorescens. Peptidomics corroborated the proteolytic propensity of P. fluorescens-contaminated milk, but with lower sensitivity. The results obtained from this study provide insights into the alterations related to P. fluorescens 39 contamination, both pre and post heat treatment. This approach could represent a potential tool to retrospectively understand the actual quality of milk under cold chain storage conditions, either before or after heat treatments.


2022 ◽  
pp. 0734242X2110701
Author(s):  
Roland Berger ◽  
Joachim Lehner

It is a well-established fact that the quality and quantity of landfill gas (LFG) start declining after a landfill is closed to further waste intake. Conventional gas treatment and utilisation systems such as flares and gas-driven engines require a certain quality of LFG: specifically, a sufficient methane concentration. Various measures are utilised to maintain the necessary quality of LFG, including a turn-down of gas extraction rates and a shutdown of low-quality gas wells, resulting in a decline of LFG production. This, however, does not have to be the case. The low calorific value (LCV) LFG capture and treatment technology developed by e-flox and referred to in this article as ‘LCV LFG System’ can significantly increase the collection rate and the amount of treated methane in an old landfill. This article introduces such new treatment measures, describes gas capture calculation methodologies and presents actual results based on a medium-sized landfill in Germany. The study demonstrates, among other things, that the LCV LFG system can reduce the CO2 avoidance costs to roughly 10 €/tCO2eq. We present this new technology as a quick and straightforward measure of dealing with the climate issues related to methane emissions of old landfills.


Author(s):  
Yusraida Khairani Dalimunthe ◽  
Sugiatmo Kasmungin ◽  
Listiana Satiawati ◽  
Thariq Madani ◽  
Teuku Ananda Rizky

The purpose of this study was to see the best quality of briquettes from the main ingredient of coconut shell waste<br />with various biomass additives to see the calorific value, moisture content, ash content, and volatile matter<br />content of the biomass mixture. Furthermore, further research will be carried out specifically to see the quality of<br />briquettes from a mixture of coconut shell waste and sawdust. The method used in this research is to conduct a<br />literature study of various literature related to briquettes from coconut shell waste mixed with various additives<br />specifically and then look at the best quality briquettes produced from these various pieces of literature. As for<br />what is determined as the control variable of this study is coconut shell waste and as an independent variable,<br />namely coffee skin waste, rice husks, water hyacinth, Bintaro fruit, segon wood sawdust, coconut husk, durian<br />skin, bamboo charcoal, areca nut skin, and leather waste. sago with a certain composition. Furthermore, this<br />paper also describes the stages of making briquettes from coconut shell waste and sawdust for further testing of<br />the calorific value, moisture content, ash content, volatile matter content on a laboratory scale for further<br />research. From various literatures, it was found that the highest calorific value was obtained from a mixture of<br />coconut shell waste and bamboo charcoal with a value of 7110.7288 cal / gr and the lowest calorific value was<br />obtained from a mixture of coconut shell waste and sago shell waste with a value of 114 cal / gr, then for the value<br />The highest water content was obtained from a mixture of coconut shell waste and rice husk with a value of<br />37.70% and the lowest water content value was obtained from a mixture of coconut shell waste 3.80%, then for the<br />highest ash content value was obtained from a mixture of coconut shell waste and coffee skin with a value of<br />20.862% and for the lowest ash content value obtained from a mixture of coconut shell and Bintaro fruit waste,<br />namely 2%, and for the highest volatile matter content value obtained from a mixture of coconut shell and coconut<br />husk waste with a value of 33.45% and for the value of volatile matter levels The lowest was obtained from a<br />mixture of coconut shell waste and sago skin waste with a value of 33 , 45%.


Author(s):  
K. M. Shynkaruk

In connection with the increase in prices for natural gas, the urgent issue is to calculate not only the amount of gas consumed, but also its quality precisely with the consumer. The quality of gas is the compliance of its physicochemical parameters with established regulatory documents. With the current gas accounting and payment system in Ukraine, consumers using the same number of cubic meters receive different heat of combustion. The paper analyzes the regulatory framework for assessing the energy performance of natural gas. The necessity of the transition to accounting for natural gas in energy units is substantiated. Existing methods and means for determining the calorific value of natural gas that are used in Ukraine and abroad are considered. Currently, direct and indirect methods are used to determine the calorific value of natural value of natural gas. The most common is the calculation method based on chromatographic analysis, the implementation of which requires expensive equipment. Other methods for determining the calorific value of natural gas is correlation. The essence of which is to establish the relationship between a certain physicochemical property of natural gas and calorific value, which can be established by experimental observations and based on theoretical analysis, which makes it possible to draw a conclusion about the calorific value of natural gas. Based on the analysis, it was found that currently there are no simple in design and not expensive means of controlling the qualitative characteristics of natural gas commercially available. Therefore, it is relevant to solve the problem of operational control of the quality of natural gas, through scientific justification, development and improvement of tools that enable the indirect accounting of the energy value of natural gas in accordance with global trends in energy accounting. A correlation analysis was carried out to establish the relationship between the thermal conductivity and the calorific value of natural gas. The use of the thermocatalytic method for determining the calorific value of gas is proposed, which will allow designing a relatively cheap and easy-to-use device for monitoring the quality of natural gas specifically for the consumer.


Author(s):  
José Manuel Riesco-Ávila ◽  
David Alejandro Rodríguez-Valderrama ◽  
Diana Marcela Pardo-Cely ◽  
Francisco Elizalde- Blancas

Of the different methods for recycling plastic, pyrolysis offers the possibility to overcome the limitations of mechanical recycling, which requires large amounts of clean, separate and homogeneous plastic waste to ensure the quality of the final product. Pyrolysis is the chemical decomposition of plastic materials by thermal degradation in the absence of oxygen. The plastic waste is introduced into a chamber, where it is subjected to high temperatures, and the gases generated are condensed in order to obtain a distillate hydrocarbon. This paper presents the results obtained from the pyrolysis of plastic waste mixtures of polypropylene, high density polyethylene, and low density polyethylene. In a first stage, the plastic waste is subjected to a rapid pyrolysis process at temperatures of 440-450 °C, obtaining a mixture of heavy hydrocarbons. Subsequently, these hydrocarbons are subjected to a distillation process, first at a temperature of 180 °C, where a hydrocarbon with properties similar to those of gasoline is obtained, and then at a temperature of 360 °C, yielding a hydrocarbon with properties similar to those of diesel.


1995 ◽  
Vol 15 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Per Kjellstrand ◽  
Evi Martinson ◽  
Anders Wieslander ◽  
Björn Holmquist

Objective Fluids for peritoneal dialysis (PD) cause cytotoxic reactions in many different in vitro systems. The low pH, the high osmolality of the fluids, and the glucose degradation products formed during heat sterilization have been considered responsible. In the present study, we investigate the influence of temperature and time during heat sterilization of PD fluids and glucose solutions on glucose degradation and cytotoxicity of the solutions. Design Ampoules containing PD-fluid or glucose solution were heated in an oil bath to predetermined F o values (combinations of time and temperature giving equal energy/bacteriallethality). Cytotoxicity of the solutions was measured as groWth inhibition of cultured L-929 fibroblasts. Glucose degradation was measured as UV absorbance at 228 and 284 nm. Results The same general pattern was seen in both PD fluid and glucose solution. Cytotoxicity decreased from 90% to 15% when the sterilization temperature was increased from 115° to 140°C and concomitantly the length of time shortened in order to maintain equal bacteriallethality. Under the same conditions, degradation products, measured as UV absorbance at 284 nm, decreased from 0.2 to 0.02. Conclusion To minimizethe development of cytotoxic breakdown products, high temperatures over short periods of time should be used to heat-sterilize PD fluids. Even as small an increase as 5°C at around 120°C will improve the quality of the solutions.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ingrid E. Meyer-Cifuentes ◽  
Johannes Werner ◽  
Nico Jehmlich ◽  
Sabine E. Will ◽  
Meina Neumann-Schaal ◽  
...  

AbstractThe degradation of synthetic polymers by marine microorganisms is not as well understood as the degradation of plastics in soil and compost. Here, we use metagenomics, metatranscriptomics and metaproteomics to study the biodegradation of an aromatic-aliphatic copolyester blend by a marine microbial enrichment culture. The culture can use the plastic film as the sole carbon source, reaching maximum conversion to CO2 and biomass in around 15 days. The consortium degrades the polymer synergistically, with different degradation steps being performed by different community members. We identify six putative PETase-like enzymes and four putative MHETase-like enzymes, with the potential to degrade aliphatic-aromatic polymers and their degradation products, respectively. Our results show that, although there are multiple genes and organisms with the potential to perform each degradation step, only a few are active during biodegradation.


Sign in / Sign up

Export Citation Format

Share Document