scholarly journals Hopping Conductivity and Dielectric Relaxations in Ag/PAN Nanocomposites

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3251
Author(s):  
M.A. Kudryashov ◽  
A.A. Logunov ◽  
L.A. Mochalov ◽  
Yu.P. Kudryashova ◽  
M.M. Trubyanov ◽  
...  

The dependence of the conductivity and electric modulus of silver/polyacrylonitrile nanocomposites on the frequency of an alternating electric field has been studied at different temperatures and starting mixture AgNO3 contents. The frequency dependences on the conductivity of the nanocomposites in the range of 103–106 Hz are in good agreement with the power law f0.8. The observed relaxation maxima in the relation of the imaginary part of the electric modulus on the frequency can be explained by interfacial polarization. It was shown that the frequency dispersions of conductivity and electric modulus were well described by the Dyre and Cole-Davidson models, respectively. Using these models, we have estimated the relaxation times and the activation energies of these structures. A mechanism of charge transport responsible for the conductivity of nanocomposites is proposed. An assumption is made regarding the presence of Ag42+ and Ag82+ silver clusters in the polymer.

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 221
Author(s):  
Mariya Aleksandrova ◽  
Ivailo Pandiev

This paper presents impedance measurements of ferroelectric structures involving lead-free oxide and polymer-oxide composite coatings for sensing and energy harvesting applications. Three different ferroelectric materials grown by conventional microfabrication technologies on solid or flexible substrates are investigated for their basic resonant characteristics. Equivalent electrical circuit models are applied to all cases to explain the electrical behavior of the structures, according to the materials type and thickness. The analytical results show good agreement with the experiments carried out on a basic types of excited thin-film piezoelectric transducers. Additionally, temperature and frequency dependences of the dielectric permittivity and losses are measured for the polymer-oxide composite device in relation with the surface morphology before and after introduction of the polymer to the functional film.


2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
Emin Ergun

The aim of this study is to investigate, experimentally and numerically, the change of critical buckling load in composite plates with different ply numbers, orientation angles, stacking sequences and boundary conditions as a function of temperature. Buckling specimens have been removed from the composite plate with glass-fibre reinforcement at [0°]i and [45°]i (i= number of ply). First, the mechanical properties of the composite material were determined at different temperatures, and after that, buckling experiments were done for those temperatures. Then, numerical solutions were obtained by modelling the specimens used in the experiment in the Ansys10 finite elements package software. The experimental and numerical results are in very good agreement with each other. It was found that the values of the buckling load at [0°] on the composite plates are higher than those of other angles. Besides, symmetrical and anti-symmetrical conditions were examined to see the effect of the stacking sequence on buckling and only numerical solutions were obtained. It is seen that the buckling load reaches the highest value when it is symmetrical in the cross-ply stacking sequence and it is anti-symmetrical in the angle-ply stacking sequence.


2009 ◽  
Vol 615-617 ◽  
pp. 311-314 ◽  
Author(s):  
W.S. Loh ◽  
J.P.R. David ◽  
B.K. Ng ◽  
Stanislav I. Soloviev ◽  
Peter M. Sandvik ◽  
...  

Hole initiated multiplication characteristics of 4H-SiC Separate Absorption and Multiplication Avalanche Photodiodes (SAM-APDs) with a n- multiplication layer of 2.7 µm were obtained using 325nm excitation at temperatures ranging from 300 to 450K. The breakdown voltages increased by 200mV/K over the investigated temperature range, which indicates a positive temperature coefficient. Local ionization coefficients, including the extracted temperature dependencies, were derived in the form of the Chynoweth expression and were used to predict the hole multiplication characteristics at different temperatures. Good agreement was obtained between the measured and the modeled multiplication using these ionization coefficients. The impact ionization coefficients decreased with increasing temperature, corresponding to an increase in breakdown voltage. This result agrees well with the multiplication characteristics and can be attributed to phonon scattering enhanced carrier cooling which has suppressed the ionization process at high temperatures. Hence, a much higher electric field is required to achieve the same ionization rates.


Author(s):  
Manish Dak ◽  
Radha Charan Verma ◽  
S N A Jaaffrey

Rheological properties of tomato concentrate were evaluated using a wide-gap rotational viscometer (Brookfield Engineering Laboratories: Model LVDV-II) at different temperatures of 20, 30, 40, 50, and 60oC, at concentration of 18, 12.18 and 8.04 % total solids, and at appropriate shear rate(1-100 RPM). The power law model was fitted to the experimental results. The values of flow behaviour index (n) were found less than unity (0.23 to 0.82) at all the temperature and the concentration indicating shear-thinning (pseudoplasticity) behaviour of the concentrate. The correlation between the observed consistency coefficient ranging from 0.09 to 65.87 Pa.sn and the inverse absolute temperature has been exhibited by Arrhenius model. Consistency coefficient increased exponentially with increase in the concentration. Statistical model was used for prediction of the consistency coefficient as a function of temperature and concentration which showed a good agreement (r2=0.99) between experimental and theoretical values. The magnitude of activation energy were found to be in the range of 8.6 to 14.08 kJ/mol.K.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1097-1103 ◽  
Author(s):  
V. PAVLÍNEK ◽  
P. SÁHA ◽  
T. KITANO ◽  
J. HROMÁDKOVÁ ◽  
J. STEJSKAL ◽  
...  

Investigation of the electrorheological effect of silicone-oil suspensions of silica particles coated with polyaniline base in a DC electric field revealed that breaking stress, as a criterion the intensity of the electrorheological phenomenon, steeply increased at first with coating thickness. At relatively low polyaniline content (volume fraction ≈ 0.05), it has reached a value several times higher than that with suspension of pure silica. Then they became virtually constant or slightly increased. The frequency spectra of dielectric characteristics of these systems reflect high relaxation times. The results suggest that the interfacial polarization of particles is predominantly controlled by polarizability of their surface layer, and the influence of the thickness is of secondary importance.


2018 ◽  
Vol 7 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Norbert Halmen ◽  
Christoph Kugler ◽  
Eduard Kraus ◽  
Benjamin Baudrit ◽  
Thomas Hochrein ◽  
...  

Abstract. The degree of cross-linking and curing is one of the most important values concerning the quality of cross-linked polyethylene (PE-X) and the functionality of adhesives and resin-based components. Up to now, the measurement of this property has mostly been time-consuming and usually destructive. Within the shown work the feasibility of single-sided nuclear magnetic resonance (NMR) for the non-destructive determination of the degree of cross-linking and curing as process monitoring was investigated. First results indicate the possibility of distinguishing between PE-X samples with different degrees of cross-linking. The homogeneity of the samples and the curing kinetics of adhesives can also be monitored. The measurements show good agreement with reference tests (wet chemical analysis, differential scanning calorimetry, dielectric analysis). Furthermore, the influence of sample temperature on the characteristic relaxation times can be observed.


2021 ◽  
Vol 63 (9) ◽  
pp. 1415
Author(s):  
М.Н. Магомедов

Based on the RP-model of a nanocrystal, an analytical method is developed for calculating the specific surface energy (), isochoric and isobaric derivatives of the  function with respect to temperature, and isothermal derivatives of the  function with respect to pressure and density. It is shown that the method is applicable for both macro-and nanocrystals with a given number of atoms and a certain surface shape. To implement this method, the parameters of the Mie–Lennard-Jones paired interatomic potential were determined in a self-consistent way based on the thermoelastic properties of the crystal. The method was tested on macrocrystals of 15 single-component substances: for 8-FCC crystals (Cu, Ag, Au, Al, Ni, Rh, Pd, Pt) and for 7-BCC crystals (Fe, V, Nb, Ta, Cr, Mo, W). The calculations were made at different temperatures and showed good agreement with the experimental data. Using the example of FCC-Rh, the change in surface properties with a decrease of the nanocrystal size along the isotherms of 10, 300, 2000 K is studied. It is shown that at high pressures and low temperatures, there is a region where the  function increases at an isomorphic-isothermal-isobaric decrease in the nanocrystal size. As the temperature increases, this area disappears.


2011 ◽  
Vol 201-203 ◽  
pp. 643-646 ◽  
Author(s):  
Bo Yan Xu ◽  
Hai Ying Tian ◽  
Jie Yang ◽  
De Zhi Sun ◽  
Shao Li Cai

SNCR (Selective Non Catalytic Reduction) system is proposed, with 40% methylamine aqueous solution as reducing agent to reduce NOx in diesel exhaust gas. The effect of injection position and volume on the reduction efficiency through the test bench is systematically researched. A three-dimensional model of a full-sized diesel SNCR system generated by CFD software FIRE is used to investigate the reduction efficiency under different temperatures. The simulated results have a good agreement with the test results, and it can be used to optimize SNCR system. The results can indicate the practical application of this technology.


2007 ◽  
Vol 21 (17) ◽  
pp. 2965-2978 ◽  
Author(s):  
A. DUTTA ◽  
T. P. SINHA

The complex perovskite oxide barium iron antimonate, BaFe 1/2 Sb 1/2 O 3 (BFS) is synthesized by a solid-state reaction technique for the first time. The X-ray diffraction of the sample at room temperature shows a monoclinic phase. The field dependences of dielectric response and the loss tangent of the sample are measured in a frequency range from 50 Hz to 1 MHz and in a temperature range from 143 to 463 K. An analysis of the loss factor with frequency is performed by the scaling behavior of the dielectric loss spectra. The frequency dependence of the loss peaks are found to obey the Arrhenius law with an activation energy ≃0.81 eV . The scaling behavior of the dielectric loss spectra suggests that the distribution of relaxation times is temperature-independent. The frequency-dependent electrical data are also analyzed in the framework of conductivity and electric modulus formalisms. The scaling behavior of the imaginary electric modulus shows the temperature-independent nature of the distribution of relaxation times. All these formalisms resulted in the qualitative similarities in the relaxation time. The relationship between relaxation parameters and electrical conduction indicates the hopping motion of electrons from Fe(II) to Fe(III) ions in BFS.


2016 ◽  
Vol 713 ◽  
pp. 288-292 ◽  
Author(s):  
Jabid Quiroga ◽  
John Quiroga ◽  
Luis Mujica ◽  
Rodolfo Villamizar ◽  
Magda Ruiz

In this paper, a guided wave temperature robust PCA-based stress monitoring methodology is proposed. It is based on the analysis of the longitudinal guided wave propagating along the path under stress. Slight changes in the wave are detected by means of PCA via statistical T2 and Q indices. Experimental and numerical simulations of the guided wave propagating in material under different temperatures have shown significant variations in the amplitude and the velocity of the wave. This condition can jeopardize the discrimination of the different stress scenarios detected by the PCA indices. Thus, it is proposed a methodology based on an extended knowledge base, composed by a PCA statistical model for different discrete temperatures to produce a robust classification of stress states under variable environmental conditions. Experimental results have shown a good agreement between the predicted scenarios and the real ones


Sign in / Sign up

Export Citation Format

Share Document