scholarly journals Nanoindentation Reveals Crosslinking Behavior of Solar Encapsulants—The Methodological Advantages over Bulk Methods

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3328
Author(s):  
Djamel Eddine Mansour ◽  
Christoph Herzog ◽  
Petra Christöfl ◽  
Luciana Pitta Bauermann ◽  
Gernot Oreski ◽  
...  

The power degradation and failure of photovoltaic (PV) modules can be caused by changes in the mechanical properties of the polymeric components during the module lifetime. This paper introduces instrumented nanoindentation as a method to investigate the mechanical properties of module materials such as polymeric encapsulants. To this end, nanoindentation tests were carried out on ethylene vinyl acetate (EVA) surfaces, which have been separated from the glass panel. Two types of time-dependent indentation cycle modes, the time domain (creep mode) and frequency domain (dynamic mode) were performed to determine the viscoelastic behavior. For each mode, a corresponding model was applied to calculate the main mechanical properties. The general capability of nanoindentation as cross-linking determination method is investigated with the methodological advantages over bulk mechanical characterization methods. A large number of Glass/EVA/Backsheet laminates were built using different lamination conditions resulting in different degrees of curing. Both indentation modes indicate good modulus sensitivity for following the EVA crosslinking in its early stages but could not reliably differentiate between samples with higher EVA branching. Additional dynamic mechanical analysis (DMA) characterization was used as an established method to validate the indentation measurements. Both nanoindentation and DMA tensile mode produce similar quantitative viscoelastic responses, in the form of the damping factor parameter, demonstrated for three different frequencies at room temperature. A statistical study of the data reveals the advantages for the investigation of multilayer PV laminates by using nanoindenation as a surface method while also being applicable to field aged modules.

2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


2008 ◽  
Vol 8 (8) ◽  
pp. 4008-4012 ◽  
Author(s):  
S. Kanagaraj ◽  
R. M. Guedes ◽  
Mónica S. A. Oliveira ◽  
José A. O. Simões

Since the discovery of carbon nanotubes (CNTs), their remarkable properties make them ideal candidates to reinforce in advanced composites. In this attempt, an enhancement of mechanical properties of high density polyethylene (HDPE) by adding 1 wt% of CNTs is studied using Dynamic mechanical and Thermal analyzer (DMTA). The chemically treated and functionalized CNTs were homogeneously dispersed with HDPE and the test samples were made using injection molding machine. Using DMTA, storage modulus (E′), loss modulus (E″) and damping factor (tan δ) of the sample under oscillating load were studied as a function of frequency of oscillation and temperatures. The storage modulus decreases with an increase of temperature and increases by adding CNTs in the composites where the reinforcing effect of CNT is confirmed. It is concluded that the large scale polymer relaxations in the composites are effectively restrained by the presence of CNTs and thus the mechanical properties of nanocomposites increase. The transition frequency of loss modulus is observed at 1 Hz. The loss modulus decreases with an increase of temperature at below 1 Hz but opposite trend was observed at above 1 Hz. The shift factor could be predicted from Williams-Landel-Ferry (WLF) model which has good agreement with experimental results.


2014 ◽  
Vol 684 ◽  
pp. 111-116
Author(s):  
Yan Bin Gao ◽  
Xiong Chen ◽  
Jin Sheng Xu ◽  
Shao Qing Hu

In this paper, the static and dynamic mechanical viscoelastic behavior of NEPE propellant are studied. Under static conditions, five samples were subjected to constant-strain-rate monotonic loading with five different loading rates at room temperature. The dynamic mechanical analysis was employed for measurements of temperature and frequency dependence of the NEPE propellant by mean of BOSE-DMA-ELF3200 in frequency range from 1Hz to 16Hz. And get the dynamic mechanics temperature spectrum In the low temperature region, a single relaxation is observed in loss modulus-temperature Curves, which is glass transition relaxation. The results showed that NEPE propellant showed rate dependence and the same mechanical properties in the lower temperature and higher frequency.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1897
Author(s):  
Ulisses Oliveira Costa ◽  
Lucio Fabio Cassiano Nascimento ◽  
Wendell Bruno Almeida Bezerra ◽  
Vinícius de Oliveira Aguiar ◽  
Artur Camposo Pereira ◽  
...  

The coating of natural fiber by graphene oxide (GO) has, over, this past decade, attracted increasing attention as an effective way to improve the adhesion to polymer matrices and enhance the composite properties. In particular, the GO-functionalized 30 vol% curaua fiber (Ananas Erectifolius) reinforcing epoxy composite was found to display superior tensile and thermogravimetric properties as well as higher fiber/matrix interfacial shear strength. In this brief report, dynamic mechanical analysis (DMA) was conducted in up to 50 vol% GO-functionalized curaua fiber reinforced epoxy matrix (EM) composites. The objective was not only to extend the amount incorporated but also for the first time investigate the composite viscoelastic behavior. The GO functionalization of curaua fibers (GOCF) improved the DMA storage (E′) and loss (E″) modulus compared to the non-functionalized fiber composites. Values at 30 °C of both E′ (13.44 GPa) and E″ (0.67 GPa) for 50 vol% GO-functionalized curaua fiber reinforced epoxy matrix composites (50GOCF/EM) were substantially higher than those of 20 GOCF/EM with E′ (7.08 GPa) and E″ (0.22 GPa) as well as non-functionalized 50CF/EM with E′ (11.04 GPa) and E″ (0.45 GPa). All these results are above the neat epoxy previously reported values of E′ (3.86 GPa) and E″ (0.09 GPa). As for the tangent delta, the parameters associated with damping factor and glass transition temperature were not found to be significantly changed by GO functionalization, but decreased with respect to the neat epoxy due to chain mobility restriction.


2013 ◽  
Vol 750-752 ◽  
pp. 332-335
Author(s):  
Teng Fei Shen ◽  
Fa Chao Wu

In this work, a series of multi-walled carbon nanotube (MWNT)/polycarbonate (PC) composites were prepared. A combined experimental of transmission electron microscope (TEM) and dynamic mechanical analysis (DMA) were used to study on the morphology and thermo-mechanical properties of MWNT/PC composites as a function of MWNT aspect ratio. The results showed that smaller aspect ratio nanotubes lead to greater broadening of the loss modulus peak in frequency space, however, there was no effect of aspect ratio on the glass transition temperature. The breadth of the loss modulus peak was found to correlate with the free space parameter, a measure of the spacing between the MWNTs. These results shed light on the separate impacts of aspect ratio, dispersion, and interface modification on the viscoelastic behavior of prepared MWNT/PC composites.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3140
Author(s):  
Kamil Dydek ◽  
Anna Boczkowska ◽  
Rafał Kozera ◽  
Paweł Durałek ◽  
Łukasz Sarniak ◽  
...  

The main aim of this work was the investigation of the possibility of replacing the heavy metallic meshes applied onto the composite structure in airplanes for lightning strike protection with a thin film of Tuball single-wall carbon nanotubes in the form of ultra-light, conductive paper. The Tuball paper studied contained 75 wt% or 90 wt% of carbon nanotubes and was applied on the top of carbon fibre reinforced polymer before fabrication of flat panels. First, the electrical conductivity, impact resistance and thermo-mechanical properties of modified laminates were measured and compared with the reference values. Then, flat panels with selected Tuball paper, expanded copper foil and reference panels were fabricated for lightning strike tests. The effectiveness of lightning strike protection was evaluated by using the ultrasonic phased-array technique. It was found that the introduction of Tuball paper on the laminates surface improved both the surface and the volume electrical conductivity by 8800% and 300%, respectively. The impact resistance was tested in two directions, perpendicular and parallel to the carbon fibres, and the values increased by 9.8% and 44%, respectively. The dynamic thermo-mechanical analysis showed higher stiffness and a slight increase in glass transition temperature of the modified laminates. Ultrasonic investigation after lightning strike tests showed that the effectiveness of Tuball paper is comparable to expanded copper foil.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 698
Author(s):  
Selin Sökmen ◽  
Katja Oßwald ◽  
Katrin Reincke ◽  
Sybill Ilisch

High compatibility and good rubber–filler interactions are required in order to obtain high quality products. Rubber–filler and filler–filler interactions can be influenced by various material factors, such as the presence of processing aids. Although different processing aids, especially the plasticizers, and their effects on compatibility have been investigated in the literature, their influence on rubber–filler interactions in highly active filler reinforced mixtures is not explicit and has not been investigated in depth. For this purpose, the influence of treated distillate aromatic extract (TDAE) oil content and its addition time on interactions between silica and rubber chains were investigated in this study. Rubber–filler and filler–filler interactions of uncured and cured silica-filled SBR/BR blends were characterized by using rubber layer L concept and dynamic mechanical analysis, whereas mechanical properties were studied by tensile test and Shore A hardness. Five parts per hundred rubber (phr) TDAE addition at 0, 1.5, and 3 min of mixing were characterized to investigate the influence of TDAE addition time on rubber–filler interactions. It was observed that addition time of TDAE can influence the development of bounded rubber structure and the interfacial interactions, especially at short time of mixing, less than 5 min. Oil addition with silica at 1.5 min of mixing resulted in fast rubber layer development and a small reduction in storage shear modulus of uncured blends. The influence of oil content on rubber–filler and filler–filler interactions were investigated for the binary blends without oil, with 5 and 20 phr TDAE content. The addition of 5 phr oil resulted in a slight increase in rubber layer and 0.05 MPa reduction in Payne effect of uncured blends. The storage tensile modulus of vulcanizates at small strains decreased from 13.97 to 8.28 MPa after oil addition. Twenty parts per hundred rubber (phr) oil addition to binary blends caused rubber layer L to decrease from 0.45 to 0.42. The storage tensile modulus of the vulcanizates and its reduction with higher amplitudes were incontrovertibly high among the vulcanizates with lower oil content, which were 13.57 and 4.49 MPa, respectively. When any consequential change in mechanical properties of styrene–butadiene rubber (SBR)/butadiene rubber (BR) blends could not be observed at different TDAE addition time, increasing amount of oil in blends enhanced elongation at break, and decreased Shore A hardness and tensile strength.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1851
Author(s):  
Hye-Seon Park ◽  
Chang-Kook Hong

Poly (l-lactic acid) (PLLA) is a promising biomedical polymer material with a wide range of applications. The diverse enantiomeric forms of PLLA provide great opportunities for thermal and mechanical enhancement through stereocomplex formation. The addition of poly (d-lactic acid) (PDLA) as a nucleation agent and the formation of stereocomplex crystallization (SC) have been proven to be an effective method to improve the crystallization and mechanical properties of the PLLA. In this study, PLLA was blended with different amounts of PDLA through a melt blending process and their properties were calculated. The effect of the PDLA on the crystallization behavior, thermal, and mechanical properties of PLLA were investigated systematically by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), polarized optical microscopy (POM), dynamic mechanical analysis (DMA), and tensile test. Based on our findings, SC formed easily when PDLA content was increased, and acts as nucleation sites. Both SC and homo crystals (HC) were observed in the PLLA/PDLA blends. As the content of PDLA increased, the degree of crystallization increased, and the mechanical strength also increased.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 440
Author(s):  
Fabiana Pereira da Costa ◽  
Jucielle Veras Fernandes ◽  
Luiz Ronaldo Lisboa de Melo ◽  
Alisson Mendes Rodrigues ◽  
Romualdo Rodrigues Menezes ◽  
...  

Natural stones (limestones, granites, and marble) from mines located in northeastern Brazil were investigated to discover their potential for use in civil construction. The natural stones were characterized by chemical analysis, X-ray diffraction, differential thermal analysis, and optical microscopy. The physical-mechanical properties (apparent density, porosity, water absorption, compressive and flexural strength, impact, and abrasion) and chemical resistance properties were also evaluated. The results of the physical-mechanical analysis indicated that the natural stones investigated have the potential to be used in different environments (interior, exterior), taking into account factors such as people’s circulation and exposure to chemical agents.


Sign in / Sign up

Export Citation Format

Share Document