scholarly journals Experimental Development of Coal-Like Material with Solid-Gas Coupling for Quantitative Simulation Tests of Coal and Gas Outburst Occurred in Soft Coal Seams

Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 155 ◽  
Author(s):  
Xingkai Wang ◽  
Wenbing Xie ◽  
Zhili Su ◽  
Qingteng Tang

Solid-gas coupling coal-like materials are essential for simulating coal and gas outbursts and the long-term safety study of CO2 sequestration in coal. However, reported materials still differ substantially from natural coal in mechanical, deformation and gaseous properties; the latter two aspects are common not considered. There is a lack of a definite and quantitative preparation method of coal-like materials with high similarity for future reference. Here, 25 groups of raw material ratios were designed in the orthogonal experiment using uniaxial compression, shearing and adsorption/desorption tests. Experiment results indicated that the coal-like materials were highly similar to soft coals in properties mentioned above. And range analysis revealed the key influencing factors of each mechanical index. The gypsum/petrolatum ratio controls the density, compressive strength, elastic modulus, cohesion and deformation characteristic. The coarse/fine coal powder (1–2 and 0–0.5 mm) controls the internal friction angle and is the secondary controlling factor for compressive strength and elastic modulus. The effect of coal particle size on the sample strength was studied using scanning electron microscope (SEM). When the gypsum/petrolatum ratio increased, the deformation characteristics changed from ductile to brittle. The different failure modes in the samples were revealed. The coal powder content is a key in the gas adsorption/desorption properties and an empirical formula for estimating the adsorption capacity was established. Based on the range analysis of experimental results, a multiple linear regression model of the mechanical parameters and their key influencing factors was obtained. Finally, a composition closely resembling the natural coal was determined, which differs by only 0.47–7.41% in all parameters except porosity (11.76%). Possible improvements and extension to similar materials are discussed. The findings of this study can help for better understanding of coal and gas outburst mechanism and stability of CO2 sequestration in soft coal seams.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-28
Author(s):  
Hao Han ◽  
Shun Liang ◽  
Yaowu Liang ◽  
Xuehai Fu ◽  
Junqiang Kang ◽  
...  

Elastic modulus is an important parameter affecting the permeability change in the process of coalbed methane (CBM)/enhanced coalbed methane (ECBM) production, which will change with the variable gas content. Much research focuses on the constant value of elastic modulus; however, variable stiffness of coal during CO2 injection has been considered in this work. The coupled thermo-hydro-mechanical (THM) model is established and then validated by primary production data, as well as being applied in the prediction of CO2/N2-ECBM recovery. The results show that the harder coal seam is beneficial to primary production, while the softer coal seam results in greater CO2/N2-ECBM recovery and CO2 sequestration. N2 and CO2 mixture injection could be applied to balance early N2 breakthrough and pronounced matrix swelling induced by CO2 adsorption, and to prolong the process of effective CH4 recovery. Besides, reduction in stiffness of coal seam during CO2 injection would moderate the significant permeability loss induced by matrix swelling. With the increase of the weakening degree of coal seam stiffness, CO2 cumulative storage also shows an increasing trend. Neglecting the weakening effect of CO2 adsorption on coal seam stiffness could underestimate the injection capacity of CO2. Injection of hot CO2 could improve the permeability around injection well and then enhance CO2 cumulative storage and CBM recovery. Furthermore, compared with ECBM production, injection temperature is more favorable for CO2 storage, especially within hard coal seams. Care should be considered that significant permeability change is induced by mechanical characteristics alterations in deep burial coal seams in further study, especially for CO2-ECBM projects.


2021 ◽  
Author(s):  
Guangqing Hu ◽  
Wenxu Liang ◽  
Qingting Shan ◽  
Meng Zhao ◽  
Xianzeng Shi ◽  
...  

Abstract Fracture of coal structure and low permeability were the main reasons for the “difficult to released gas” in broken soft coal seam. Exploration of horizontal well coalbed gas technology of roof and floor of broken soft coal seam provided a new technical way for coalbed gas development in broken soft coal seam. In this paper, taking Xinxie -1 drilling as an example, the evaluation method of fractured reservoirs in roof and floor of broken soft coal seam was improved. By systematic studied on mineralogy, petrology and engineering mechanics characteristics of top and bottom plates in broken soft coal seam, the influence of rock mineral composition on the rock mechanics properties of the roof and floor of coal seam was explored. In addition, By used correlation analysis and grey relational analysis, a brittle evaluation method of coal seam top and bottom plates based on mineral composition was established. The research results showed that: ①The main components of rock minerals in the top and bottom plates of broken soft coal seam were quartz and clay minerals, followed by plagioclase, siderite and pyrite. The main types of rock cementation were quartz enlargement and siderite cementation, and the pore damage caused by cementation was much greater than that of compaction; ②With the increased of rock particle size, compressive strength (CS) and elastic modulus (E) showed a gradual increase trend, Poisson's ratio (μ) showed a gradual decrease trend, other rock mechanical parameters had no obvious changes. The difference of mineral composition and cementation type was the key factor cause abnormal mechanical properties of rocks; ③Compared with clay minerals, the change of brittle mineral content such as quartz, plagioclase and siderite in rocks were sensitive to the mechanical properties of rocks. The sensitive minerals of compressive strength, shear strength, elastic modulus and softening coefficient were quartz, the sensitive minerals of compressive strength were plagioclase and siderite, and the sensitive minerals of Poisson's ratio are quartz and clay; ④The calculation results of the established mineral weight analysis method were more realistic. It could be concluded that the roof of 13-1 coal, 11-2 coal, 9-2 coal and 4-2 coal seams were more inclined to form fracture network during fracturing, which had guiding significance for the optimization of fracturing horizon.


2020 ◽  
Author(s):  
Peng Sun ◽  
Haitao Sun ◽  
Fujin Lin ◽  
Xuelin Yang ◽  
Wangang Jiang ◽  
...  

Abstract In order to obtain similar materials with specific physical and mechanical parameters and adsorption and desorption indexes used in coal and gas outburst simulation tests, pulverized coal was selected as aggregate, sodium humate as cementing agent and river sand as auxiliary materials. Based on this, an orthogonal test with 6 factors and 5 levels was designed, and the tests of weighing, uniaxial compression, firmness and adsorption and desorption were carried out. The parameters such as density, uniaxial compressive strength, elastic modulus, firmness coefficient and adsorption-desorption index of similar materials with different ratios were obtained, and the sensitivity of each factor was analyzed by range analysis. The influence law of various factors on the parameters of similar materials was studied, the ratio model of similar materials was obtained and the reliability of the model was verified, and a complete method for determining the ratio model of similar materials of outburst coal was put forward. The results show that the density of similar materials increases with the increase of river sand content, the uniaxial compressive strength and elastic modulus increase significantly with the increase of pulverized coal ratio and sodium humate content, and the firmness coefficient increases linearly with the increase of pulverized coal ratio. The adsorption constant an increases linearly with the increase of sodium humate content, while the adsorption constant b decreases linearly with the increase of sodium humate content. The initial elution rate △p of similar materials increases at first and then decreases with the increase of sodium humate content.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peng Sun ◽  
Haitao Sun ◽  
Fujin Lin ◽  
Xuelin Yang ◽  
Wangang Jiang ◽  
...  

AbstractTo obtain the similar materials with specific physical and mechanical parameters and adsorption and desorption indexes used in coal and gas outburst simulation tests, pulverized coal was selected as aggregate, and sodium humate was selected as cementing agent and river sand was selected as auxiliary materials. Based on this, orthogonal tests with 6 factors and 5 levels were designed, and the tests of weighing, uniaxial compression, firmness, adsorption and desorption were carried out. The parameters such as density, uniaxial compressive strength, elastic modulus, firmness coefficient and adsorption–desorption index of similar materials with different ratios were obtained, and the sensitivity of each factor was analyzed by range analysis. The influence of various factors on the similar materials was studied, and the ratio model of similar materials was obtained. The reliability of the model was verified, and a complete method for determining the ratio model of similar materials of outburst coal was put forward. The results show that the density of the similar materials increases with the river sand content, and the uniaxial compressive strength and elastic modulus increase significantly with the pulverized coal ratio and sodium humate content, and the firmness coefficient increases linearly with the pulverized coal ratio. The adsorption constant increases linearly with the sodium humate content, while the adsorption constant b decreases linearly with the sodium humate content. The initial elution rate Δp of similar materials increases at first and then decreases with the increase of sodium humate content.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1845
Author(s):  
Narcis Anghel ◽  
Valentina Maria Dinu ◽  
Liliana Verestiuc ◽  
Irene Alexandra Spiridon

Designing composites based on natural polymers has attracted attention for more than a decade due to the possibility to manufacture medical devices which are biocompatible with the human body. Herein, we present some biomaterials made up of collagen, polyurethane, and cellulose doped with lignin and lignin-metal complex, which served as transcutaneous drug delivery systems. Compared with base material, the compressive strength and the elastic modulus of biocomposites comprising lignin or lignin-metal complex were significantly enhanced; thus, the compressive strength increased from 61.37 to 186.5 kPa, while the elastic modulus increased from 0.828 to 1.928 MPa. The release of ketokonazole from the polymer matrix follows a Korsmeyer–Peppas type kinetics with a Fickian diffusion. All materials tested were shown to be active against pathogenic microorganisms. The mucoadhesiveness, bioadhesiveness, mechanical resistance, release kinetic, and antimicrobial activity make these biocomposites to be candidates as potential systems for controlled drug release.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4008
Author(s):  
Zhengkai Feng ◽  
Heng Wang ◽  
Chuanjiang Wang ◽  
Xiujuan Sun ◽  
Shuai Zhang

Fused deposition modeling (FDM) has the advantage of being able to process complex workpieces with relatively simple operations. However, when processing complex components in a suspended state, it is necessary to add support parts to be processed and formed, which indicates an excessive dependence on support. The stress intensity of the supported positions of the printing components can be modified by changing the supporting model of the parts, their density, and their distance in relation to the Z direction in the FDM printing settings. The focus of the present work was to study the influences of these three modified factors on the stress intensity of the supporting position of the printing components. In this study, 99 sets of compression tests were carried out using a position of an FDM-supported part, and the experimental results were observed and analyzed with a 3D topographic imager. A reference experiment on the anti-pressure abilities of the printing components without support was also conducted. The experimental results clarify how the above factors can affect the anti-pressure abilities of the supporting positions of the printing components. According to the results, when the supporting density is 30% and the supporting distance in the Z direction is Z = 0.14, the compressive strength of the printing component is lowest. When the supporting density of the printing component is ≤30% and the supporting distance in the Z direction is Z ≥ 0.10, the compressive strength of printing without support is greater than that of the linear support model. Under the same conditions, the grid-support method offers the highest compressive strength.


2021 ◽  
Vol 13 (3) ◽  
pp. 1364
Author(s):  
Michele La Noce ◽  
Alessandro Lo Faro ◽  
Gaetano Sciuto

Clay has a low environmental impact and can develop into many different products. The research presents two different case studies. In the first, the clay is the binder of raw earth doughs in order to produce clay-bricks. We investigate the effects of natural fibrous reinforcements (rice straws and basalt fibers) in four different mixtures. From the comparison with a mix without reinforcements, it is possible to affirm that the 0.40% of basalt fibers reduce the shrinkage by about 25% and increase the compressive strength by about 30%. Future studies will focus on identifying the fibrous effects on tensile strength and elastic modulus, as well as the optimal percentage of fibers. In the second study, the clay, in form of brick powder (“cocciopesto”), gives high alkaline resistance and breathability performance, as well as rendering and color to the plaster. The latter does not have artificial additives. The plaster respects the cultural instance of the original building. The research underlines how the use of a local (and traditional) material such as clay can be a promoter of sustainability in the contemporary building sector. Future studies must investigate further possible uses of clay as well as a proper regulatory framework.


2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


2014 ◽  
Vol 894 ◽  
pp. 45-49 ◽  
Author(s):  
Luisa Pani ◽  
Lorena Francesconi

In this paper an experimental program has been carried out in order to compare compressive strength fcand elastic static modulus Ecof recycled concrete with ultrasonic waves velocity Vp, to establish the possibility of employing nondestructive ultrasonic tests to qualify recycled concrete. 9 mix of concrete with different substitution percentage of recycled aggregates instead of natural ones and 27 cylindrical samples have been made. At first ultrasonic tests have been carried out on cylindrical samples, later elastic static modulus Ecand compressive strength fchave been experimentally evaluated. The dynamic elastic modulus Edhas been determined in function of ultrasonic wave velocity Vp; furthermore the correlations among Ed, Ec, fce Vphave been determined. It has been demonstrated that ultrasonic tests are suitable for evaluating different deformative and resisting concrete performances even when variations are small.


Sign in / Sign up

Export Citation Format

Share Document