scholarly journals Progress in Enzymatic Biodiesel Production and Commercialization

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 355
Author(s):  
Liangliang Lv ◽  
Lingmei Dai ◽  
Wei Du ◽  
Dehua Liu

Enzymatic biodiesel production has attracted tremendous interest due to its well-recognized advantages. However, high enzyme costs limit the application of enzymatic processes in industrial production. In the past decade, great improvements have been achieved in the lab and the industrial scale, and the production cost of the enzymatic process has been reduced significantly, which has led to it being economically competitive compared to the chemical process. This paper summarizes the progress achieved in enzymatic biodiesel research and commercialization, including reducing enzyme cost, expanding low-quality raw materials, and novel reactor designs. The advantages and disadvantages of different enzymatic processes are also compared.

2021 ◽  
Author(s):  
Reza Davarnejad ◽  
Jamal Azizi ◽  
Shaghayegh Bahari

Olefins (ethylene, propylene and butadiene) as raw materials play an important role in a lot of chemical and polymer products. In industrial scale, there are several techniques from crude oil, natural gas, coal and methanol for the olefins production. Each of these has some advantages. The petrochemicals with liquid feed can simultaneously produce all of the olefins. Shazand Petrochemical Co. (as the first olefins production unit in Iran) produces all of the olefins using naphtha (light and heavy) feed. In this chapter, the production process of olefins based on naphtha will be studied from the beginning to the end (involving pyrolysis, compression, chilling and fractionation processes).


2021 ◽  
Vol 2 (2) ◽  
pp. 126-138
Author(s):  
Muhammad Yusuf Abduh ◽  
◽  
Robert Manurung ◽  
Hero Jan Heeres ◽  
Noor Illi Mohamad Puad ◽  
...  

Biodiesel has been commercially produced on a large scale, but its application is still limited primarily due to its production cost, which is relatively more expensive than that of fossil fuel. Recently, there has been an ongoing parallel development whereby biodiesel production is carried out on a community scale, including a mobile production unit of biodiesel with local input and demand. The produced biodiesel is often intended for use by the concerned local community, which greatly reduces logistics and transportation cost. Unlike typical biodiesel production plants, a mobile biodiesel unit consists of a biodiesel production facility placed inside a standard cargo container and mounted on a truck, so that it can be transported to a region near the location of the raw materials. In this paper, we review existing concepts and units for the development of community-scale and mobile production of biodiesel. These include the main reactor technology for biodiesel production, as well as the pre-treatment prior to conveyance to the reaction unit and post-treatment. The pre-treatment includes oil extraction from oilseeds by an oil-expeller unit, as well as quality control of the oil before it enters the reaction unit. The post-treatment includes refining and purification of the biodiesel to meet the product specification set by the biodiesel industry. This paper also discusses the production cost of biodiesel on a community scale, particularly when using a mobile biodiesel unit. The production cost varies from $0.76-1.12/l. This range is still not yet competitive to the current average price of approximately $0.98/l of diesel around the world. The production cost may be reduced by applying a biorefinery concept that may translate into an economically alluring and environmentally attractive business model.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 812
Author(s):  
Hoang Chinh Nguyen ◽  
My-Linh Nguyen ◽  
Chia-Hung Su ◽  
Hwai Chyuan Ong ◽  
Horng-Yi Juan ◽  
...  

Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.


2021 ◽  
Vol 28 (1) ◽  
pp. 53-75 ◽  
Author(s):  
Penny Spikins ◽  
Jennifer C. French ◽  
Seren John-Wood ◽  
Calvin Dytham

AbstractArchaeological evidence suggests that important shifts were taking place in the character of human social behaviours 300,000 to 30,000 years ago. New artefact types appear and are disseminated with greater frequency. Transfers of both raw materials and finished artefacts take place over increasing distances, implying larger scales of regional mobility and more frequent and friendlier interactions between different communities. Whilst these changes occur during a period of increasing environmental variability, the relationship between ecological changes and transformations in social behaviours is elusive. Here, we explore a possible theoretical approach and methodology for understanding how ecological contexts can influence selection pressures acting on intergroup social behaviours. We focus on the relative advantages and disadvantages of intergroup tolerance in different ecological contexts using agent-based modelling (ABM). We assess the relative costs and benefits of different ‘tolerance’ levels in between-group interactions on survival and resource exploitation in different environments. The results enable us to infer a potential relationship between ecological changes and proposed changes in between-group behavioural dynamics. We conclude that increasingly harsh environments may have driven changes in hormonal and emotional responses in humans leading to increasing intergroup tolerance, i.e. transformations in social behaviour associated with ‘self-domestication’. We argue that changes in intergroup tolerance is a more parsimonious explanation for the emergence of what has been seen as ‘modern human behaviour’ than changes in hard aspects of cognition or other factors such as cognitive adaptability or population size.


2004 ◽  
Vol 264-268 ◽  
pp. 1681-1684
Author(s):  
B. Kahraman ◽  
S. Atay ◽  
T. Batar ◽  
H.I. Köse

2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 500
Author(s):  
Vladimir Kapustin ◽  
Elena Chernysheva ◽  
Roman Khakimov

In recent years, there has been a trend in the global oil industry to improve the proportion of heavy high-sulfur crude oils in the total volume of extracted and processed resources, reserves of which are estimated at over 800 billion metric tons. Therefore, the main line of oil refining is processing of heavy crudes and residua to allow maximum use of the hydrocarbon potential and yield of high-margin products. Hydrogenation processes of heavy raw materials are most attractive in terms of product quality. This article analyzes tar hydrocracking processes that are either in operation or at the stage of full-scale testing. These include Veba Combi-Cracker (VCC), Uniflex, suspended-bed catalyst hydrocracking (ENI), and vacuum residue hydroconversion (TIPS RAS). These technologies use heterogeneous catalysts and are designed to obtain the largest possible amount of liquid products. This article discusses the features of each technology, highlights their advantages and disadvantages, shows the main approaches to process management, and speculates about the development of these technologies. Tar refining is a major process in heavy oil upgrading, and the development of efficient tar-processing methods will influence refinery configurations and management.


1941 ◽  
Vol 1 (1) ◽  
pp. 26-41 ◽  
Author(s):  
Simon Kuznets

This paper deals with the relation between statistical analysis as applied in economic inquiry and history as written or interpreted by economic historians. Although both these branches of economic study derive from the same body of raw materials of inquiry—the recordable past and present of economic society—each has developed in comparative isolation from the other. Statistical economists have failed to utilize adequately the contributions that economic historians have made to our knowledge of the past; and historians have rarely employed either the analytical tools or the basic theoretical hypotheses of statistical research. It is the thesis of this essay that such failure to effect a close interrelation between historical approach and statistical analysis needs to be corrected in the light of the final goal of economic study.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yujin Cao ◽  
Rubing Zhang ◽  
Chao Sun ◽  
Tao Cheng ◽  
Yuhua Liu ◽  
...  

Succinate is a valuable platform chemical for multiple applications. Confronted with the exhaustion of fossil energy resources, fermentative succinate production from renewable biomass to replace the traditional petrochemical process is receiving an increasing amount of attention. During the past few years, the succinate-producing process using microbial fermentation has been made commercially available by the joint efforts of researchers in different fields. In this review, recent attempts and experiences devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation engineering, and downstream processing. The key limitations and challenges faced in current microbial production systems are also proposed.


Sign in / Sign up

Export Citation Format

Share Document