scholarly journals Anti-Oxidative Effect of Weak Alkaline Reduced Water in RAW 264.7 Murine Macrophage Cells

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2062
Author(s):  
Thuy Thi Trinh ◽  
Ailyn Fadriquela ◽  
Johny Bajgai ◽  
Subham Sharma ◽  
Md. Habibur Rahman ◽  
...  

Excessive oxidative stress (OS) is a common cause of various diseases such as cancer, diabetes, and obesity; thus, an anti-oxidative solution is essential for the improvement of human health. Increasing evidence suggests that alkaline reduced water (ARW), especially between pH 9.5–10.0, has antioxidant capacity; however, relatively few studies have reported the effect of weak ARW at pH 8.5 on OS, especially in vitro. This study was conducted to evaluate the anti-oxidative efficacy of weak ARW with negative oxidation-reduction potential (ORP) and relatively high hydrogen (H2) concentration, as compared to tap water (TW) and ARW at pH 9.5. RAW 264.7 murine macrophage cells, stimulated by hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) to induce OS, were used as a control (Con) and then treated with TW and ARW at pH 8.5 (ARW_8.5) and pH 9.5 (ARW_9.5) at different concentrations (0.1%, 1%, and 10% v/v). Results showed that cell viability was significantly restored after treatment with both ARW_8.5 and ARW_9.5 compared to Con/H2O2 and Con/LPS, while TW treatment did not induce significant changes. Levels of reactive oxygen species (ROS), nitric oxide (NO), Ca2+, catalase, and glutathione peroxide (GPx) showed significant differences in a concentration-dependent manner in ARW_8.5 and ARW_9.5 groups compared to Con/H2O2 and Con/LPS groups. Likewise, the expression of p-p38, p-JNK, and p-ERK was also significantly reduced in the ARW-treated groups, but not in the TW group. In conclusion, ARW_8.5 exhibited anti-oxidative effects through the regulation of the MAPK signaling pathway in RAW 264.7 murine macrophage cells, indicating the health-promoting potential of weak ARW through daily intake.

2020 ◽  
Vol 15 (4) ◽  
pp. 1934578X2092048 ◽  
Author(s):  
Hyun-Kyu Kang ◽  
Chang-Gu Hyun

Recently, additional therapeutic potentials of classical antibiotics are gaining considerable attention. The discovery of penicillin in the 1920s had a major impact on the history of human health. Penicillin has been used for the treatment for fatal microbial infections in humans and has led to the discovery of several new antibiotics. d-(+)-Cycloserine (DCS) is an antibiotic isolated from Streptomyces orchidaceous and is used in conjunction with other drugs in the treatment of tuberculosis. However, there have been no studies on the anti-inflammatory effects of DCS in RAW 264.7 macrophage cell line. To investigate the anti-inflammatory effects of DCS, we examined the ability of DCS to inhibit the inflammatory responses in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in this study. Cell viability was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were pretreated with various concentrations (2, 4, and 6 mM) of DCS, then treated with 1 μg/mL LPS to detect its anti-inflammatory effects. d-(+)-Cycloserine inhibited the production of nitric oxide (NO) in a concentration-dependent manner, and to some extent, inhibited the production of prostaglandin E2. Consistent with these findings, DCS suppressed the expression of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-6. However, it had no effect on the expression of tumor necrosis factor-α. Western blot analysis demonstrated that DCS inhibited inducible nitric oxide synthase and suppressed cyclooxygenase type-2 (COX-2) expression. In addition, investigation of its effects on nuclear factor kappa B signaling showed that DCS inhibited phosphorylation of inhibitory kappa B-α (IκB-α) and increased intracellular IκB-α in a concentration-dependent manner. Furthermore, DCS inhibited the phosphorylation of LPS-induced extracellular signal-regulated kinase, however it did not affect phosphorylation of c-jun N-terminal kinase and p38. Further studies confirmed that the inhibition of phosphorylation of IκB-α was mediated through the inhibition of phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. To determine the applicability of DCS to the skin, cytotoxicity on HaCaT keratinocytes was measured following treatment with various concentrations (2, 4, 6, 8, and 10 mM) of DCS using MTT assay. These results suggest that DCS may be used as a potential drug for the treatment of inflammatory diseases.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3124 ◽  
Author(s):  
Taejin Park ◽  
Jin-Soo Park ◽  
Ji Han Sim ◽  
Seung-Young Kim

Acetylation involves the chemical introduction of an acetyl group in place of an active hydrogen group into a compound. In this study, we synthesized 7-acetoxycoumarin (7AC) from acetylation of umbelliferone (UMB). We examined the anti-inflammatory properties of 7AC in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells. The anti-inflammatory activity of 7AC on viability of treated cells was assessed by measuring the level of expression of NO, PGE2 and pro-inflammatory cytokines, namely interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in 7AC-treated RAW 264.7 macrophages. The 7AC was nontoxic to cells and inhibited the production of cytokines in a concentration-dependent manner. In addition, its treatment suppressed the production of pro-inflammatory cytokines in a dose-dependent manner and concomitantly decreased the protein and mRNA expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, the levels of the phosphorylation of mitogen-activated protein kinase (MAPK) family proteins such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 and nuclear factor kappa B (NF-κB) were reduced by 7AC. In conclusion, we generated an anti-inflammatory compound through acetylation and demonstrated its efficacy in cell-based in vitro assays.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Hai Yang Yu ◽  
Kyoung-Sook Kim ◽  
Young-Choon Lee ◽  
Hyung-In Moon ◽  
Jai-Heon Lee

Oleifolioside A, a new triterpenoid compound isolated fromDendropanax morbiferaLeveille (D. morbifera), was shown in this study to have potent inhibitory effects on lipopolysaccharide (LPS-)stimulated nitric oxide (NO) and prostaglandin E2(PGE2) production in RAW 264.7 macrophages. Consistent with these findings, oleifolioside A was further shown to suppress the expression of LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxigenase-2 (COX-2) in a dose-dependent manner at both the protein and mRNA levels and to significantly inhibit the DNA-binding activity and transcriptional activity of NF-κB in response to LPS. These results were found to be associated with the inhibition of the degradation and phosphorylation of IκB-αand subsequent translocation of the NF-κB p65 subunit to the nucleus. Inhibition of NF-κB activation by oleifolioside A was also shown to be mediated through the prevention of p38 MAPK and ERK1/2 phosphorylation. Taken together, our results suggest that oleifolioside A has the potential to be a novel anti-inflammatory agent capable of targeting both the NF-κB and MAPK signaling pathways.


Author(s):  
Edrees Khan Rahmatzada ◽  
Prof. Paras Nath Yadav ◽  
Dr. Yuba Raj Pokharel

Thiosemicarbazone have the antiviral, antibacterial, antifungal, and anticancer effects. 3-OH-Me-TSC inhibited the cell viability of HepG-2 cells by CV assay in a concentration dependent manner (control, 1μM, 3μM, 10μM, 30μM, and 100μM) with IC50 value of 9.587622μM. Further colony formation assay demonstrated that 3-OH-Me-TSC inhibits colony number and size of HepG-2. Wound healing assay exhibited that 3-OH-Me-TSC inhibit the migration of HepG-2 cells. DAPI staining showed that 3-OH-Me-TSC inhibited proliferation of HepG-2 cells in 30μM and 100μM concentrations respectively. 3-OH-Me-TSC inhibited VEGF, p38 alpha, C-JUN, BECN-1, ERK, NF-KB, in HepG-2 cells. We found that 3-OH-Me-TSC inhibit proliferation of HepG-2 cells by inhibiting MAPK signaling pathway, 3-OH-Me-TSC can be developed as future chemotherapeutic agent for treatment of hepatocellular carcinoma after the evaluation of this compounds in more cancer cells an in vivo model.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3910 ◽  
Author(s):  
Min-Seon Kim ◽  
Jin-Soo Park ◽  
You Chul Chung ◽  
Sungchan Jang ◽  
Chang-Gu Hyun ◽  
...  

Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.


2020 ◽  
Vol 21 (21) ◽  
pp. 7813
Author(s):  
Kiho Lee ◽  
Iliana Escobar ◽  
Yeeun Jang ◽  
Wooseong Kim ◽  
Frederick M. Ausubel ◽  
...  

Sphingosine-1-phophate (S1P) is a sphingolipid-derived signaling molecule that controls diverse cellular functions including cell growth, homeostasis, and stress responses. In a variety of metazoans, cytosolic S1P is transported into the extracellular space where it activates S1P receptors in a concentration-dependent manner. In the free-living nematode Caenorhabditis elegans, the spin-2 gene, which encodes a S1P transporter, is activated during Gram-positive or Gram-negative bacterial infection of the intestine. However, the role during infection of spin-2 and three additional genes in the C. elegans genome encoding other putative S1P transporters has not been elucidated. Here, we report an evolutionally conserved function for S1P and a non-canonical role for S1P transporters in the C. elegans immune response to bacterial pathogens. We found that mutations in the sphingosine kinase gene (sphk-1) or in the S1P transporter genes spin-2 or spin-3 decreased nematode survival after infection with Pseudomonas aeruginosa or Enterococcus faecalis. In contrast to spin-2 and spin-3, mutating spin-1 leads to an increase in resistance to P. aeruginosa. Consistent with these results, when wild-type C. elegans were supplemented with extracellular S1P, we found an increase in their lifespan when challenged with P. aeruginosa and E. faecalis. In comparison, spin-2 and spin-3 mutations suppressed the ability of S1P to rescue the worms from pathogen-mediated killing, whereas the spin-1 mutation had no effect on the immune-enhancing activity of S1P. S1P demonstrated no antimicrobial activity toward P. aeruginosa and Escherichia coli and only minimal activity against E. faecalis MMH594 (40 µM). These data suggest that spin-2 and spin-3, on the one hand, and spin-1, on the other hand, transport S1P across cellular membranes in opposite directions. Finally, the immune modulatory effect of S1P was diminished in C. eleganssek-1 and pmk-1 mutants, suggesting that the immunomodulatory effects of S1P are mediated by the p38 MAPK signaling pathway.


2008 ◽  
Vol 41 (5) ◽  
pp. 393-403 ◽  
Author(s):  
Xiaohui Wang ◽  
Yidong Li ◽  
Xiaoyan Zhu ◽  
Yan Wang ◽  
Fei Diao ◽  
...  

Glucocorticoid (GC) effectively suppresses immune and inflammatory responses and inhibits the growth of several types of cells, but the role of GC and its receptor on macrophage proliferation is unclear. In our previous work, we found RAW-GR(−) cells (murine macrophage RAW264.7 cells stably transfected with GR-siRNA expression vector by RNA interference) grew faster by about twofold. In this study, we further explored the role and mechanisms of GC/GR on the proliferation of macrophage. We found that the growth of RAW264.7 cells was inhibited by dexamethasone (Dex) in a concentration-dependent manner. The mRNA and protein levels of signal regulatory protein α1 (SIRPA) were induced by GC/GR in RAW264.7 cells and SIRPA expression was decreased remarkably in RAW-GR(−) cells. Overexpression of SIRPA negatively regulated the proliferation of RAW-GR(−) cells, and inhibition of SIRPA expression by a small from RNA interference attenuated Dex-induced proliferation inhibition in RAW264.7 cells. The proliferation inhibition of GC/GR was also found in mouse peritoneal macrophage, which was associated with the increase in SIRPA induced by GC/GR as well. In addition, elevation of the expression of CDK2, cyclinD1, and cyclinB1, but not phosphorylated ERK1/2 and p38, was found in RAW-GR(−) cells. In conclusion, we provided the novel evidences that GC/GR inhibited the growth of RAW264.7 cells and mouse peritoneal macrophage, and the antiproliferative effect of GC/GR on these cells was at least in part a result from GC/GR-induced SIRPA expression. Up-regulation of CDK2, cyclinD1, and cyclinB1 was also related to the increased proliferation of RAW-GR(−) cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bin Chen ◽  
Ying Teng ◽  
Xingguang Zhang ◽  
Xiaofeng Lv ◽  
Yanling Yin

Both diabetes and hyperinsulinemia are confirmed risk factors for Alzheimer’s disease. Some researchers proposed that antidiabetic drugs may be used as disease-modifying therapies, such as metformin and thiazolidinediones, although more evidence was poorly supported. The aim of the current study is to investigate the role of metformin in Aβ-induced cytotoxicity and explore the underlying mechanisms. First, the experimental results show that metformin salvaged the neurons exposed to Aβin a concentration-dependent manner with MTT and LDH assay. Further, the phosphorylation levels of JNK, ERK1/2, and p38 MAPK were measured with western blot analysis. It was investigated that Aβincreased phospho-JNK significantly but had no effect on phospho-p38 MAPK and phospho-ERK1/2. Metformin decreased hyperphosphorylated JNK induced by Aβ; however, the protection of metformin against Aβwas blocked when anisomycin, the activator of JNK, was added to the medium, indicating that metformin performed its protection against Aβin a JNK-dependent way. In addition, it was observed that metformin protected the neurons via the suppression of apoptosis. Taken together, our findings demonstrate that metformin may have a positive effect on Aβ-induced cytotoxicity, which provides a preclinical strategy against AD for elders with diabetes.


Sign in / Sign up

Export Citation Format

Share Document