scholarly journals Characterization of JC Polyomavirus Entry by Serotonin Receptors

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 73
Author(s):  
Melissa Maginnis ◽  
Colleen L. Mayberry ◽  
Kashif Mehmood ◽  
Matthew Parent ◽  
Samuel Hess

JC polyomavirus (JCPyV) causes a lifelong persistent infection in the kidney in the majority of the population. In severely immunocompromised individuals, JCPyV can become reactivated, spread in the central nervous system, and infect glial cells, astrocytes, and oligodendrocytes which are necessary for myelin production. The viral infection and cytolytic destruction of glial cells leads to the development of the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML), for which there are currently no approved treatment options. In order to develop effective antiviral therapies, it is essential to define the virus–host cell interactions that drive infection and the virus–receptor interactions that are major regulators of tissue tropism and viral disease outcomes. Following attachment to sialic acid receptors, JCPyV requires the serotonin 5-hydroxytryptamine (5-HT2) receptors to mediate internalization. However, the mechanism by which JCPyV utilizes 5-HT2 receptors to invade host cells is poorly understood. Using super-resolution fluorescence photoactivation localization microscopy (FPALM), we have determined that JCPyV localizes with 5-HT2 receptors at timepoints consistent with viral entry. Furthermore, we have determined that the 5-HT2 receptor-associated scaffolding proteins beta-arrestin, adaptor protein complex 2 (AP2) and dynamin are required for viral internalization through a clathrin-mediated endocytosis pathway. Additionally, we have identified a beta-arrestin-binding motif in the intracellular loop of the 5-HT2A receptor that is critical for JCPyV entry and infection. These findings highlight the importance of viral receptors in regulating viral infection and illuminate potential targets for antiviral treatment.

2021 ◽  
Author(s):  
Colleen L. Mayberry ◽  
Michael P. Wilczek ◽  
Tristan M. Fong ◽  
Sarah L. Nichols ◽  
Melissa S. Maginnis

JC polyomavirus (JCPyV) infects the majority of the population, establishing a lifelong, asymptomatic infection in the kidney of healthy individuals. People that become severely immunocompromised may experience JCPyV reactivation, which can cause progressive multifocal leukoencephalopathy (PML), a neurodegenerative disease. Due to a lack of therapeutic options, PML results in fatality or significant debilitation among affected individuals. Cellular internalization of JCPyV is mediated by serotonin 5-hydroxytryptamine subfamily 2 receptors (5-HT2Rs) via clathrin-mediated endocytosis. The JCPyV entry process requires the clathrin-scaffolding proteins β-arrestin, adaptor protein 2 (AP2), and dynamin. Further, a β-arrestin interacting domain, the Ala-Ser-Lys (ASK) motif, within the C-terminus of 5-HT2AR is important for JCPyV internalization and infection. Interestingly, 5-HT2R subtypes A, B, and C equally support JCPyV entry and infection, and all subtypes contain an ASK motif, suggesting a conserved mechanism for viral entry. However, the role of the 5-HT2R ASK motifs and the activation of β-arrestin-associated proteins during internalization has not been fully elucidated. Through mutagenesis, the ASK motifs within 5-HT2BR and 5-HT2CR were identified as critical for JCPyV internalization and infectivity. Further, utilizing biochemical pulldown techniques, mutagenesis of the ASK motifs in 5-HT2BR and 5-HT2CR resulted in reduced β-arrestin binding. Utilizing small-molecule chemical inhibitors and RNA interference, G-protein receptor kinase 2 (GRK2) was determined to be required for JCPyV internalization and infection by mediating interactions between β-arrestin and the ASK motif of 5-HT2Rs. These findings demonstrate that GRK2 and β-arrestin interactions with 5-HT2Rs are critical for JCPyV entry by clathrin-mediated endocytosis and resultant infection. IMPORTANCE As intracellular parasites, viruses require a host cell to replicate and cause disease. Therefore, virus-host interactions contribute to viral pathogenesis. JC polyomavirus (JCPyV) infects most of the population, establishing a lifelong asymptomatic infection within the kidney. Under conditions of severe immunosuppression JCPyV may spread to the central nervous system, causing the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). Individuals living with HIV or undergoing immunomodulatory therapies are at risk for developing PML. The mechanisms of how JCPyV uses specific receptors on the surface of host cells to initiate internalization and infection is a poorly understood process. We have further identified cellular proteins involved in JCPyV internalization and infection and elucidated their specific interactions that are responsible for activation of receptors. Collectively, these findings illuminate how viruses usurp cellular receptors during infection, contributing to current development efforts for therapeutic options for the treatment or prevention of PML.


2018 ◽  
Vol 92 (7) ◽  
Author(s):  
Jeanne K. DuShane ◽  
Michael P. Wilczek ◽  
Colleen L. Mayberry ◽  
Melissa S. Maginnis

ABSTRACTThe human JC polyomavirus (JCPyV) infects the majority of the population worldwide and presents as an asymptomatic, persistent infection in the kidneys. In individuals who are immunocompromised, JCPyV can become reactivated and cause a lytic infection in the central nervous system resulting in the fatal, demyelinating disease progressive multifocal leukoencephalopathy (PML). Infection is initiated by interactions between the capsid protein viral protein 1 (VP1) and the α2,6-linked sialic acid on lactoseries tetrasaccharide c (LSTc), while JCPyV internalization is facilitated by 5-hydroxytryptamine 2 receptors (5-HT2Rs). The mechanisms by which the serotonin receptors mediate virus entry and the signaling cascades required to drive viral infection remain poorly understood. JCPyV was previously shown to induce phosphorylation of extracellular signal-regulated kinase (ERK), a downstream target of the mitogen-activated protein kinase (MAPK) pathway, upon virus entry. However, it remained unclear whether ERK activation was required for JCPyV infection. Both ERK-specific small interfering RNA (siRNA) and ERK inhibitor treatments resulted in significantly diminished JCPyV infection in both kidney and glial cells yet had no effect on the infectivity of the polyomavirus simian virus 40 (SV40). Experiments characterizing the role of ERK during steps in the viral life cycle indicate that ERK activation is required for viral transcription, as demonstrated by a significant reduction in production of large T antigen (TAg), a key viral protein associated with the initiation of viral transcription and viral replication. These findings delineate the role of the MAPK-ERK signaling pathway in JCPyV infection, elucidating how the virus reprograms the host cell to promote viral pathogenesis.IMPORTANCEViral infection is dependent upon host cell factors, including the activation of cellular signaling pathways. These interactions between viruses and host cells are necessary for infection and play an important role in viral disease outcomes. The focus of this study was to determine how the human JC polyomavirus (JCPyV), a virus that resides in the kidney of the majority of the population and can cause the fatal, demyelinating disease progressive multifocal leukoencephalopathy (PML) in the brains of immunosuppressed individuals, usurps a cellular signaling pathway to promote its own infectious life cycle. We demonstrated that the activation of extracellular signal-regulated kinase (ERK), a component of the mitogen-activated protein kinase (MAPK) pathway, promotes JCPyV transcription, which is required for viral infection. Our findings demonstrate that the MAPK-ERK signaling pathway is a key determinant of JCPyV infection, elucidating new information regarding the signal reprogramming of host cells by a pathogenic virus.


2015 ◽  
Vol 89 (12) ◽  
pp. 6364-6375 ◽  
Author(s):  
Luisa J. Ströh ◽  
Melissa S. Maginnis ◽  
Bärbel S. Blaum ◽  
Christian D. S. Nelson ◽  
Ursula Neu ◽  
...  

ABSTRACTThe human JC polyomavirus (JCPyV) establishes an asymptomatic, persistent infection in the kidneys of the majority of the population and is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in immunosuppressed individuals. The Mad-1 strain of JCPyV, a brain isolate, was shown earlier to require α2,6-linked sialic acid on the lactoseries tetrasaccharide c (LSTc) glycan for attachment to host cells. In contrast, a JCPyV kidney isolate type 3 strain, WT3, has been reported to interact with sialic acid-containing gangliosides, but the role of these glycans in JCPyV infection has remained unclear. To help rationalize these findings and probe the effects of strain-specific differences on receptor binding, we performed a comprehensive analysis of the glycan receptor specificities of these two representative JCPyV strains using high-resolution X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, and correlated these data with the results of infectivity assays. We show here that capsid proteins of Mad-1 and WT3 JCPyV can both engage LSTc as well as multiple sialylated gangliosides. However, the binding affinities exhibit subtle differences, with the highest affinity observed for LSTc. Engagement of LSTc is a prerequisite for functional receptor engagement, while the more weakly binding gangliosides are not required for productive infection. Our findings highlight the complexity of virus-carbohydrate interactions and demonstrate that subtle differences in binding affinities, rather than the binding event alone, help determine tissue tropism and viral pathogenesis.IMPORTANCEViral infection is initiated by attachment to receptors on host cells, and this event plays an important role in viral disease. We investigated the receptor-binding properties of human JC polyomavirus (JCPyV), a virus that resides in the kidneys of the majority of the population and can cause the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in the brains of immunosuppressed individuals. JCPyV has been reported to interact with multiple carbohydrate receptors, and we sought to clarify how the interactions between JCPyV and cellular carbohydrate receptors influenced infection. Here we demonstrate that JCPyV can engage numerous sialylated carbohydrate receptors. However, the virus displays preferential binding to LSTc, and only LSTc mediates a productive infection. Our findings demonstrate that subtle differences in binding affinity, rather than receptor engagement alone, are a key determinant of viral infection.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Colleen L. Mayberry ◽  
Ashley N. Soucy ◽  
Conner R. Lajoie ◽  
Jeanne K. DuShane ◽  
Melissa S. Maginnis

ABSTRACTJC polyomavirus (JCPyV) establishes a persistent, lifelong, asymptomatic infection within the kidney of the majority of the human population. Under conditions of severe immunosuppression or immune modulation, JCPyV can reactivate in the central nervous system (CNS) and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease. Initiation of infection is mediated through viral attachment to α2,6-sialic acid-containing lactoseries tetrasaccharide c (LSTc) on the surface of host cells. JCPyV internalization is dependent on serotonin 5-hydroxytryptamine subfamily 2 receptors (5-HT2Rs), and entry is thought to occur by clathrin-mediated endocytosis (CME). However, the JCPyV entry process and the cellular factors involved in viral internalization remain poorly understood. Treatment of cells with small-molecule chemical inhibitors and RNA interference of 5-HT2R endocytic machinery, including β-arrestin, clathrin, AP2, and dynamin, significantly reduced JCPyV infection. However, infectivity of the polyomavirus simian virus 40 (SV40) was not affected by CME-specific treatments. Inhibition of clathrin or β-arrestin specifically reduced JCPyV internalization but did not affect viral attachment. Furthermore, mutagenesis of a β-arrestin binding domain (Ala-Ser-Lys) within the intracellular C terminus of 5-HT2AR severely diminished internalization and infection, suggesting that β-arrestin interactions with 5-HT2AR are critical for JCPyV infection and entry. These conclusions illuminate key host factors that regulate clathrin-mediated endocytosis of JCPyV, which is necessary for viral internalization and productive infection.IMPORTANCEViruses usurp cellular factors to invade host cells. Activation and utilization of these proteins upon initiation of viral infection are therefore required for productive infection and resultant viral disease. The majority of healthy individuals are asymptomatically infected by JC polyomavirus (JCPyV), but if the host immune system is compromised, JCPyV can cause progressive multifocal leukoencephalopathy (PML), a rare, fatal, demyelinating disease. Individuals infected with HIV or taking prolonged immunomodulatory therapies have a heightened risk for developing PML. The cellular proteins and pathways utilized by JCPyV to mediate viral entry are poorly understood. Our findings further characterize how JCPyV utilizes the clathrin-mediated endocytosis pathway to invade host cells. We have identified specific components of this pathway that are necessary for the viral entry process and infection. Collectively, the conclusions increase our understanding of JCPyV infection and pathogenesis and may contribute to the future development of novel therapeutic strategies for PML.


mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Melissa S. Maginnis ◽  
Luisa J. Ströh ◽  
Gretchen V. Gee ◽  
Bethany A. O’Hara ◽  
Aaron Derdowski ◽  
...  

ABSTRACTThe human JC polyomavirus (JCPyV) is the causative agent of the fatal, demyelinating disease progressive multifocal leukoencephalopathy (PML). The Mad-1 prototype strain of JCPyV uses the glycan lactoseries tetrasaccharide c (LSTc) and serotonin receptor 5-HT2Ato attach to and enter into host cells, respectively. Specific residues in the viral capsid protein VP1 are responsible for direct interactions with the α2,6-linked sialic acid of LSTc. Viral isolates from individuals with PML often contain mutations in the sialic acid-binding pocket of VP1 that are hypothesized to arise from positive selection. We reconstituted these mutations in the Mad-1 strain of JCPyV and found that they were not capable of growth. The mutations were then introduced into recombinant VP1 and reconstituted as pentamers in order to conduct binding studies and structural analyses. VP1 pentamers carrying PML-associated mutations were not capable of binding to permissive cells. High-resolution structure determination revealed that these pentamers are well folded but no longer bind to LSTc due to steric clashes in the sialic acid-binding site. Reconstitution of the mutations into JCPyV pseudoviruses allowed us to directly quantify the infectivity of the mutants in several cell lines. The JCPyV pseudoviruses with PML-associated mutations were not infectious, nor were they able to engage sialic acid as measured by hemagglutination of human red blood cells. These results demonstrate that viruses from PML patients with single point mutations in VP1 disrupt binding to sialic acid motifs and render these viruses noninfectious.IMPORTANCEInfection with human JC polyomavirus (JCPyV) is common and asymptomatic in healthy individuals, but during immunosuppression, JCPyV can spread from the kidney to the central nervous system (CNS) and cause a fatal, demyelinating disease, progressive multifocal leukoencephalopathy (PML). Individuals infected with HIV, those who have AIDS, or those receiving immunomodulatory therapies for autoimmune diseases are at serious risk for PML. Recent reports have demonstrated that viral isolates from PML patients often have distinct changes within the major capsid protein. Our structural-functional approach highlights that these mutations result in abolished engagement of the carbohydrate receptor motif LSTc that is necessary for infection. Viruses with PML-associated mutations are not infectious in glial cells, suggesting that they may play an alternative role in PML pathogenesis.


2020 ◽  
Author(s):  
Saeko Aoyama-Ishiwatari ◽  
Tomohiko Okazaki ◽  
Shun-ichiro Iemura ◽  
Tohru Natsume ◽  
Yasushi Okada ◽  
...  

SummaryViral RNA in the cytoplasm of mammalian host cells is recognized by retinoic acid– inducible protein–I (RIG-I)–like receptors (RLRs), which localize to cytoplasmic stress granules (SGs). Activated RLRs associate with the mitochondrial adaptor protein IPS-1, which activates antiviral host defense mechanisms including type I interferon (IFN) induction. It has remained unclear, however, how RLRs in SGs and IPS-1 in the mitochondrial outer membrane associate physically and engage in information transfer. Here we show that NUDT21, an RNA binding protein that regulates alternative transcript polyadenylation, physically associates with IPS-1 and mediates its localization to SGs in response to transfection with poly(I:C), a mimic of viral double-stranded RNA. We found that, despite its well-established function in the nucleus, a fraction of NUDT21 localizes to mitochondria in resting cells and becomes localized to SGs in response to poly(I:C) transfection. NUDT21 was also found to be required for efficient type I IFN induction in response to viral infection. Our results together indicate that NUDT21 links RLRs in SGs to mitochondrial IPS-1 and thereby activates host defense responses to viral infection.


2020 ◽  
Author(s):  
Laura Lafon-Hughes

BACKGROUND It is common knowledge that vaccination has improved our life quality and expectancy since it succeeded in achieving almost eradication of several diseases including chickenpox (varicella), diphtheria, hepatitis A and B, measles, meningococcal, mumps, pneumococcal, polio, rotavirus, rubella, tetanus and whooping cough (pertussis) Vaccination success is based on vaccine induction of neutralizing antibodies that help fight the infection (e.g. by a virus), preventing the disease. Conversely, Antibody-dependent enhancement (ADE) of a viral infection occurs when anti-viral antibodies facilitate viral entry into host cells and enhance viral infection in these cells. ADE has been previously studied in Dengue and HIV viruses and explains why a second infection with Dengue can be lethal. As already reviewed in Part I and Part II, SARS-Cov-2 shares with HIV not only 4 sequences in the Spike protein but also the capacity to attack the immune system. OBJECTIVE As HIV presents ADE, we wondered whether this was also the case regarding SARS-CoV-2. METHODS A literature review was done through Google. RESULTS SARS-CoV-2 presents ADE. As SARS, which does not have the 4 HIV-like inserts, has the same property, ADE would not be driven by the HIV-like spike sequences. CONCLUSIONS ADE can explain the failure of herd immunity-based strategies and will also probably hamper anti-SARS-CoV-2 vaccine development. As reviewed in Part I, there fortunately are promising therapeutic strategies for COVID-19, which should be further developed. In the meantime, complementary countermeasures to protect mainly the youth from this infection are presented to be discussed in Part V Viewpoint.


2021 ◽  
Vol 7 (7) ◽  
pp. 553
Author(s):  
Bin Gao ◽  
Shunyi Zhu

Coronavirus Disease 2019 (COVID−19) elicited by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS−CoV−2) is calling for novel targeted drugs. Since the viral entry into host cells depends on specific interactions between the receptor−binding domain (RBD) of the viral Spike protein and the membrane−bound monocarboxypeptidase angiotensin converting enzyme 2 (ACE2), the development of high affinity RBD binders to compete with human ACE2 represents a promising strategy for the design of therapeutics to prevent viral entry. Here, we report the discovery of such a binder and its improvement via a combination of computational and experimental approaches. The binder micasin, a known fungal defensin from the dermatophytic fungus Microsporum canis with antibacterial activity, can dock to the crevice formed by the receptor−binding motif (RBM) of RBD via an extensive shape complementarity interface (855.9 Å2 in area) with numerous hydrophobic and hydrogen−bonding interactions. Using microscale thermophoresis (MST) technique, we confirmed that micasin and its C−terminal γ−core derivative with multiple predicted interacting residues exhibited a low micromolar affinity to RBD. Expanding the interface area of micasin through a single point mutation to 970.5 Å2 accompanying an enhanced hydrogen bond network significantly improved its binding affinity by six−fold. Our work highlights the naturally occurring fungal defensins as an emerging resource that may be suitable for the development into antiviral agents for COVID−19.


2021 ◽  
Vol 22 (11) ◽  
pp. 5705
Author(s):  
Karolina Szewczyk-Golec ◽  
Marta Pawłowska ◽  
Roland Wesołowski ◽  
Marcin Wróblewski ◽  
Celestyna Mila-Kierzenkowska

Toxoplasma gondii is an apicomplexan parasite causing toxoplasmosis, a common disease, which is most typically asymptomatic. However, toxoplasmosis can be severe and even fatal in immunocompromised patients and fetuses. Available treatment options are limited, so there is a strong impetus to develop novel therapeutics. This review focuses on the role of oxidative stress in the pathophysiology and treatment of T. gondii infection. Chemical compounds that modify redox status can reduce the parasite viability and thus be potential anti-Toxoplasma drugs. On the other hand, oxidative stress caused by the activation of the inflammatory response may have some deleterious consequences in host cells. In this respect, the potential use of natural antioxidants is worth considering, including melatonin and some vitamins, as possible novel anti-Toxoplasma therapeutics. Results of in vitro and animal studies are promising. However, supplementation with some antioxidants was found to promote the increase in parasitemia, and the disease was then characterized by a milder course. Undoubtedly, research in this area may have a significant impact on the future prospects of toxoplasmosis therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaohui Wang ◽  
Xiang Lin ◽  
Zihan Zheng ◽  
Bingtai Lu ◽  
Jun Wang ◽  
...  

AbstractInnate immunity is important for host defense by eliciting rapid anti-viral responses and bridging adaptive immunity. Here, we show that endogenous lipids released from virus-infected host cells activate lung γδ T cells to produce interleukin 17 A (IL-17A) for early protection against H1N1 influenza infection. During infection, the lung γδ T cell pool is constantly supplemented by thymic output, with recent emigrants infiltrating into the lung parenchyma and airway to acquire tissue-resident feature. Single-cell studies identify IL-17A-producing γδ T (Tγδ17) cells with a phenotype of TCRγδhiCD3hiAQP3hiCXCR6hi in both infected mice and patients with pneumonia. Mechanistically, host cell-released lipids during viral infection are presented by lung infiltrating CD1d+ B-1a cells to activate IL-17A production in γδ T cells via γδTCR-mediated IRF4-dependent transcription. Reduced IL-17A production in γδ T cells is detected in mice either lacking B-1a cells or with ablated CD1d in B cells. Our findings identify a local host-immune crosstalk and define important cellular and molecular mediators for early innate defense against lung viral infection.


Sign in / Sign up

Export Citation Format

Share Document