scholarly journals Recycling of WEEE Plastics Waste in Mortar: The Effects on Mechanical Properties

Recycling ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 70
Author(s):  
Alessandra Merlo ◽  
Luca Lavagna ◽  
Daniel Suarez-Riera ◽  
Matteo Pavese

This work focused on the recycling of WEEE plastic waste as a partial substitute for aggregate in light mortars. The plastic mix, provided by the IREN group, was used as a replacement of aggregate in 15, 30, 45, 60, 75, and 90%vol in mortars. Worsening of the mechanical performance of around 50% was detected already at only 15%vol of mineral aggregate substituted with plastic waste. The explanation of this phenomenon was found in both the scarce mechanical properties of the used plastic and in the poor adhesion between matrix and plastics that resulted in extra-porosity formation, as also demonstrated by comparing the results with several models in the literature. However, the use of plastic waste as a partial replacement of natural aggregate contributes to the preservation of natural resources and, in any case, does not limit the application of these materials in non-structural applications.

Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2607 ◽  
Author(s):  
Chenhua Jin ◽  
Chang Wu ◽  
Chengcheng Feng ◽  
Qingfang Zhang ◽  
Ziheng Shangguan ◽  
...  

Strain-hardening cementitious composite (SHCC) is a kind of construction material that exhibits multiple cracking and strain-hardening behaviors. The partial replacement of cement with fly ash is beneficial to the formation of the tensile strain-hardening property of SHCC, the increase of environmental greenness, and the decrease of hydration heat, as well as the material cost. This study aimed to develop a sustainable construction material using a high dosage of fly ash (no less than 70% of the binder material by weight). Based on the micromechanics analysis and particle size distribution (PSD) optimization, six mixes with different fly ash to cement ratios (2.4–4.4) were designed. The mechanical properties of the developed high-volume fly ash SHCCs (HVFA-SHCCs) were investigated through tensile tests, compressive tests, and flexural tests. Test results showed that all specimens exhibited multiple cracking and strain-hardening behaviors under tension or bending, and the compressive strength of the designed mixes exceeded 30MPa at 28 days, which is suitable for structural applications. Fly ash proved to be beneficial in the improvement of tensile and flexural ductility, but an extremely high volume of fly ash can provide only limited improvement. The HVFA-SHCC mix FA3.2 (with fly ash to binder ratio of about 76% by weight) designed in this study is suggested for structural applications.


2020 ◽  
Vol 1 (1) ◽  
pp. 26
Author(s):  
Sudarshan Dattatraya Kore

Plastic is used in many forms in day-to-day life. Since Plastic is non-biodegradable, landfills do not provide an environment friendly solution. Hence, there is strong need to utilize waste plastic. This creates a large quantity of garbage every day which is unhealthy and pollutes the environment. In present scenario solid waste management is a challenge in our country. The production of solid waste is increasing day to day and causes serious concerns to the environment. In this study, the recycled plastics are used in the concrete as a partial replacement of fine aggregate in concrete. The main purpose of this study is to investigate the mechanical properties of concrete such as workability, compressive, flexural and split tensile strengths of concrete mixes with partial replacement of conventional fine aggregate with aggregate produced from plastic waste. The use of plastic aggregate as replacement for fine aggregate enhances workability and fresh bulk density of concrete mixes. The mechanical properties of concrete such as compressive, flexural, and tensile strengths of concrete reduced marginally up to 10% replacement levels.


2021 ◽  
Vol 32 ◽  
pp. 1-14
Author(s):  
Sefiu Adekunle Bello ◽  
Johnson Olumuyiwa Agunsoye ◽  
Nasirudeen Kolawole Raji ◽  
Jeleel Adekunle Adebisi ◽  
Isiaka Ayobi Raheem ◽  
...  

Fibres anisotropy and their poor adhesion to the epoxy matrix are challenges in developing polymeric epoxy composite for structural applications. Filling of epoxy with reinforcing particles has potential for producing isotropic composites. In this study, epoxy-aluminium particulate composites were developed through combined-stir-techniques. Their interfacial adhesion and microstructural properties were examined. Results obtained indicated bonding of aluminium particles to epoxy through bidentate coordinate bond. Variations observed in the Fourier Transform Infrared spectrographs (FTIR) of both composites’ grades confirm discrepancies in interactions of aluminium micro and nanoparticles with epoxy. A good interfacial adhesion of aluminium nanoparticle with epoxy established by both optical and scanning electron microscopes is an indication of good mechanical performance of the epoxy composites.


2022 ◽  
Vol 8 ◽  
Author(s):  
Sebastian Dahle ◽  
Kavyashree Srinivasa ◽  
Jure Žigon ◽  
Arnaud Maxime Cheumani Yona ◽  
Georg Avramidis ◽  
...  

The use of wood-based materials in building and construction is constantly increasing as environmental aspects and sustainability gain importance. For structural applications, however, there are many examples where hybrid material systems are needed to fulfil the specific mechanical requirements of the individual application. In particular, metal reinforcements are a common solution to enhance the mechanical properties of a wooden structural element. Metal-reinforced wood components further help to reduce cross-sectional sizes of load-bearing structures, improve the attachment of masonry or other materials, enhance the seismic safety and tremor dissipation capacity, as well as the durability of the structural elements in highly humid environments and under high permanent mechanical load. A critical factor to achieve these benefits, however, is the mechanical joint between the different material classes, namely the wood and metal parts. Currently, this joint is formed using epoxy or polyurethane (PU) adhesives, the former yielding highest mechanical strengths, whereas the latter presents a compromise between mechanical and economical constraints. Regarding sustainability and economic viability, the utilization of different adhesive systems would be preferable, whereas mechanical stabilities yielded for metal-wood joints do not permit for the use of other common adhesive systems in such structural applications. This study extends previous research on the use of non-thermal air plasma pretreatments for the formation of wood-metal joints. The plasma treatments of Norway spruce [Picea abies (L.) Karst.] wood and anodized (E6/EV1) aluminum AlMgSi0.5 (6060) F22 were optimized, using water contact angle measurements to determine the effect and homogeneity of plasma treatments. The adhesive bond strengths of plasma-pretreated and untreated specimens were tested with commercial 2-component epoxy, PU, melamine-urea formaldehyde (MUF), polyvinyl acetate (PVAc), and construction adhesive glue systems. The influence of plasma treatments on the mechanical performance of the compounds was evaluated for one selected glue system via bending strength tests. The impact of the hybrid interface between metal and wood was isolated for the tests by using five-layer laminates from three wood lamellae enclosing two aluminum plates, thereby excluding the influence of congeneric wood-wood bonds. The effect of the plasma treatments is discussed based on the chemical and physical modifications of the substrates and the respective interaction mechanisms with the glue systems.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3842
Author(s):  
Adnan Amjad ◽  
M. Shukur Zainol Abidin ◽  
Hassan Alshahrani ◽  
Aslina Anjang Ab Rahman

Natural fibre-based materials are gaining popularity in the composites industry, particularly for automotive structural and semi-structural applications, considering the growing interest and awareness towards sustainable product design. Surface treatment and nanofiller addition have become one of the most important aspects of improving natural fibre reinforced polymer composite performance. The novelty of this work is to examine the combined effect of fibre surface treatment with Alumina (Al2O3) and Magnesia (MgO) nanofillers on the mechanical (tensile, flexural, and impact) behaviour of biotex flax/PLA fibre reinforced epoxy hybrid nanocomposites. Al2O3 and MgO with a particle size of 50 nm were added in various weight proportions to the epoxy and flax/PLA fibre, and the composite laminates were formed using the vacuum bagging technique. The surface treatment of one set of fibres with a 5% NaOH solution was investigated for its effect on mechanical performance. The results indicate that the surface-treated reinforcement showed superior tensile, flexural, and impact properties compared to the untreated reinforcement. The addition of 3 wt. % nanofiller resulted in the best mechanical properties. SEM morphological images demonstrate various defects, including interfacial behaviour, fibre breakage, fibre pullout, voids, cracks, and agglomeration.


2018 ◽  
Vol 760 ◽  
pp. 171-175
Author(s):  
Martin Lidmila ◽  
Marcel Jogl ◽  
Wojciech Kubissa ◽  
Roman Jaskulski ◽  
Pavel Reiterman

Paper deals with the assessment of practical utilization of granulated cable plastic waste (GCPW) for the production of stabilized soil layers in transport engineering. The main goal of the experimental work was the evaluation of the influence of GCPW on mechanical properties of soil stabilization based on the fluidized fly ash. Mechanical properties were investigated using standard procedures in soil mechanics. GCPW was dosed as a partial replacement of fluidized fly ash up to 30 %. It was concluded, that the studied level of replacement performs critical level, additional increasing of GCPW would lead to a decline of required mechanical properties. Besides, replacement by studied waste material caused lower values of the bulk density.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3262
Author(s):  
Abrahão Bernardo Rohden ◽  
Jessica Regina Camilo ◽  
Rafaela Cristina Amaral ◽  
Estela Oliari Garcez ◽  
Mônica Regina Garcez

This paper investigates a potential application of hard-to-recycle plastic waste as polymeric addition in high strength concrete, with a focus on the potential to mitigate heat-induced concrete spalling and the consequent effects on the mechanical properties. The waste corresponds to soft and hard plastic, including household polymers vastly disposed of in landfills, although technically recyclable. Mechanical and physical properties, cracking, mass loss, and the occurrence of spalling were assessed in high strength concrete samples produced with either plastic waste or polypropylene fibers after 2-h exposure to 600 °C. The analysis was supported by Scanning Electron Microscopy and X-Ray Computed Tomography images. The plastic waste is composed of different polymers with a thermal degradation between 250 to 500 °C. Polypropylene (PP) fibers and plastic waste dispersed in concrete have proved to play an essential role in mitigating heat-induced concrete spalling, contributing to the release of internal pressure after the polymer melting. The different morphology of plastic waste and polypropylene fibers leads to distinct mechanisms of action. While the vapor pressure dissipation network originated by polypropylene fibers is related to the formation of continuous channels, the plastic waste seems to cause discontinuous reservoirs and fewer damages into the concrete matrix. The incorporation of plastic waste improved heat-induced concrete spalling performance. While 6 kg/m3 of plastic increased the mechanical performance after exposure to high temperature, the incorporation of 3 kg/m3 resulted in mechanical properties comparable to the reference concrete.


2019 ◽  
Vol 64 (2) ◽  
pp. 248-254
Author(s):  
István Zoltán Halász ◽  
Dávid Kocsis ◽  
Dániel Ábel Simon ◽  
Andrea Kohári ◽  
Tamás Bárány

In our current paper the preparation and properties of thermoplastic elastomer produced by dynamic vulcanization is presented and discussed. We dynamically vulcanized natural and styrene butadiene rubber (NR/SBR) phase by continuous extrusion. Dispersion and in-situ vulcanization of the rubber phase occurred simultaneously in a co-rotating twin screw extruder. We used a random polypropylene copolymer (rPP) as the thermoplastic matrix and untreated crumb rubber (CR) to partially substitute the neat fresh rubber in order to check whether this is a potential recycling route for waste rubber products. We studied the effect of various rubber formulations, various processing conditions (screw speed and configuration) and various CR particle size distributions by characterizing the mechanical performance of the thermoplastic dynamic vulcanizates (TDVs) with tensile and hardness tests and their morphology by evaluating SEM micrographs taken from the fracture surfaces of the tensile specimens. The results showed that increasing screw speed and more high-shear elements in the screw setup led to a finer dispersion of the rubber phase, resulting in improved mechanical properties. The ultimate tensile properties of the best TDVs reached 20.5 MPa in tensile strength and 550 % in strain at break. However, partial replacement of the fresh rubber with untreated CR caused a significant deterioration in mechanical properties, due to poor adhesion between the CR particles and the matrix and rubber. This suggests that some kind of pre-treatment (e.g. by microwave or other devulcanization techniques) is necessary to enhance the surface activity of the CR particles.


Sign in / Sign up

Export Citation Format

Share Document