scholarly journals Comparing Localization Performance of IEEE 802.11p and LTE-V V2I Communications

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2031
Author(s):  
Rreze Halili ◽  
Maarten Weyn ◽  
Rafael Berkvens

The future of transportation systems is going towards autonomous and assisted driving, aiming to reach full automation. There is huge focus on communication technologies expected to offer vehicular application services, of which most are location-based services. This paper provides a study on localization accuracy limits using vehicle-to-infrastructure communication channels provided by IEEE 802.11p and LTE-V, considering two different vehicular network designs. Real data measurements obtained on our highway testbed are used to model and simulate propagation channels, the position of base stations, and the route followed by the vehicle. Cramer–Rao lower bound, geometric dilution of precision, and least square error for time difference of arrival localization technique are investigated. Based on our analyses and findings, LTE-V outperforms IEEE 802.11p. However, it is apparent that providing larger signal bandwidth dedicated to localization, with network sites positioned at both sides of the highway, and considering the geometry between vehicle and network sites, improve vehicle localization accuracy.

Author(s):  
Shixun Wu ◽  
Min Li ◽  
Miao Zhang ◽  
Kai Xu ◽  
Juan Cao

AbstractMobile station (MS) localization in a cellular network is appealing to both industrial community and academia, due to the wide applications of location-based services. The main challenge is the unknown one-bound (OB) and multiple-bound (MB) scattering environment in dense multipath environment. Moreover, multiple base stations (BSs) are required to be involved in the localization process, and the precise time synchronization between MS and BSs is assumed. In order to address these problems, hybrid time of arrival (TOA), angle of departure (AOD), and angle of arrival (AOA) measurement model from the serving BS with the synchronization error is investigated in this paper. In OB scattering environment, four linear least square (LLS), one quadratic programming and data fusion-based localization algorithms are proposed to eliminate the effect of the synchronization error. In addition, the Cramer-Rao lower bound (CRLB) of our localization model on the root mean-square error (RMSE) is derived. In hybrid OB and MB scattering environment, a novel double identification algorithm (DIA) is proposed to identify the MB path. Simulation results demonstrate that the proposed algorithms are capable to deal with the synchronization error, and LLS-based localization algorithms show better localization accuracy. Furthermore, the DIA can correctly identify the MB path, and the RMSE comparison of different algorithms further prove the effectiveness of the DIA.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1250
Author(s):  
Daniel Medina ◽  
Haoqing Li ◽  
Jordi Vilà-Valls ◽  
Pau Closas

Global navigation satellite systems (GNSSs) play a key role in intelligent transportation systems such as autonomous driving or unmanned systems navigation. In such applications, it is fundamental to ensure a reliable precise positioning solution able to operate in harsh propagation conditions such as urban environments and under multipath and other disturbances. Exploiting carrier phase observations allows for precise positioning solutions at the complexity cost of resolving integer phase ambiguities, a procedure that is particularly affected by non-nominal conditions. This limits the applicability of conventional filtering techniques in challenging scenarios, and new robust solutions must be accounted for. This contribution deals with real-time kinematic (RTK) positioning and the design of robust filtering solutions for the associated mixed integer- and real-valued estimation problem. Families of Kalman filter (KF) approaches based on robust statistics and variational inference are explored, such as the generalized M-based KF or the variational-based KF, aiming to mitigate the impact of outliers or non-nominal measurement behaviors. The performance assessment under harsh propagation conditions is realized using a simulated scenario and real data from a measurement campaign. The proposed robust filtering solutions are shown to offer excellent resilience against outlying observations, with the variational-based KF showcasing the overall best performance in terms of Gaussian efficiency and robustness.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4618
Author(s):  
Francisco Oliveira ◽  
Miguel Luís ◽  
Susana Sargento

Unmanned Aerial Vehicle (UAV) networks are an emerging technology, useful not only for the military, but also for public and civil purposes. Their versatility provides advantages in situations where an existing network cannot support all requirements of its users, either because of an exceptionally big number of users, or because of the failure of one or more ground base stations. Networks of UAVs can reinforce these cellular networks where needed, redirecting the traffic to available ground stations. Using machine learning algorithms to predict overloaded traffic areas, we propose a UAV positioning algorithm responsible for determining suitable positions for the UAVs, with the objective of a more balanced redistribution of traffic, to avoid saturated base stations and decrease the number of users without a connection. The tests performed with real data of user connections through base stations show that, in less restrictive network conditions, the algorithm to dynamically place the UAVs performs significantly better than in more restrictive conditions, reducing significantly the number of users without a connection. We also conclude that the accuracy of the prediction is a very important factor, not only in the reduction of users without a connection, but also on the number of UAVs deployed.


Author(s):  
Marcelo N. de Sousa ◽  
Ricardo Sant’Ana ◽  
Rigel P. Fernandes ◽  
Julio Cesar Duarte ◽  
José A. Apolinário ◽  
...  

AbstractIn outdoor RF localization systems, particularly where line of sight can not be guaranteed or where multipath effects are severe, information about the terrain may improve the position estimate’s performance. Given the difficulties in obtaining real data, a ray-tracing fingerprint is a viable option. Nevertheless, although presenting good simulation results, the performance of systems trained with simulated features only suffer degradation when employed to process real-life data. This work intends to improve the localization accuracy when using ray-tracing fingerprints and a few field data obtained from an adverse environment where a large number of measurements is not an option. We employ a machine learning (ML) algorithm to explore the multipath information. We selected algorithms random forest and gradient boosting; both considered efficient tools in the literature. In a strict simulation scenario (simulated data for training, validating, and testing), we obtained the same good results found in the literature (error around 2 m). In a real-world system (simulated data for training, real data for validating and testing), both ML algorithms resulted in a mean positioning error around 100 ,m. We have also obtained experimental results for noisy (artificially added Gaussian noise) and mismatched (with a null subset of) features. From the simulations carried out in this work, our study revealed that enhancing the ML model with a few real-world data improves localization’s overall performance. From the machine ML algorithms employed herein, we also observed that, under noisy conditions, the random forest algorithm achieved a slightly better result than the gradient boosting algorithm. However, they achieved similar results in a mismatch experiment. This work’s practical implication is that multipath information, once rejected in old localization techniques, now represents a significant source of information whenever we have prior knowledge to train the ML algorithm.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


2019 ◽  
Vol 36 (7) ◽  
pp. 2017-2024
Author(s):  
Weiwei Zhang ◽  
Ziyi Li ◽  
Nana Wei ◽  
Hua-Jun Wu ◽  
Xiaoqi Zheng

Abstract Motivation Inference of differentially methylated (DM) CpG sites between two groups of tumor samples with different geno- or pheno-types is a critical step to uncover the epigenetic mechanism of tumorigenesis, and identify biomarkers for cancer subtyping. However, as a major source of confounding factor, uneven distributions of tumor purity between two groups of tumor samples will lead to biased discovery of DM sites if not properly accounted for. Results We here propose InfiniumDM, a generalized least square model to adjust tumor purity effect for differential methylation analysis. Our method is applicable to a variety of experimental designs including with or without normal controls, different sources of normal tissue contaminations. We compared our method with conventional methods including minfi, limma and limma corrected by tumor purity using simulated datasets. Our method shows significantly better performance at different levels of differential methylation thresholds, sample sizes, mean purity deviations and so on. We also applied the proposed method to breast cancer samples from TCGA database to further evaluate its performance. Overall, both simulation and real data analyses demonstrate favorable performance over existing methods serving similar purpose. Availability and implementation InfiniumDM is a part of R package InfiniumPurify, which is freely available from GitHub (https://github.com/Xiaoqizheng/InfiniumPurify). Supplementary information Supplementary data are available at Bioinformatics online.


2011 ◽  
Vol 317-319 ◽  
pp. 1078-1083 ◽  
Author(s):  
Qing Tao Lin ◽  
Xiang Bing Zeng ◽  
Xiao Feng Jiang ◽  
Xin Yu Jin

This paper establishes a 3-D localization model and based on this model, it proposes a collaborative localization framework. In this framework, node that observes the object sends its attitude information and the relative position of the object's projection in its camera to the cluster head. The cluster head adopts an algorithm proposed in this paper to select some nodes to participate localization. The localization algorithm is based on least square method. Because the localization framework is based on a 3-D model, the size of the object or other prerequisites is not necessary. At the end of this paper, a simulation is taken on the numbers of nodes selected to locate and the localization accuracy. The result implies that selecting 3~4 nodes is proper. The theoretical analysis and the simulation result also imply that a const computation time cost is paid in this framework with a high localization accuracy (in our simulation environment, a 0.01 meter error).


Author(s):  
Liangli Yang ◽  
Yongmei Su ◽  
Xinjian Zhuo

The outbreak of COVID-19 has a great impact on the world. Considering that there are different infection delays among different populations, which can be expressed as distributed delay, and the distributed time-delay is rarely used in fractional-order model to simulate the real data, here we establish two different types of fractional order (Caputo and Caputo–Fabrizio) COVID-19 models with distributed time-delay. Parameters are estimated by the least-square method according to the report data of China and other 12 countries. The results of Caputo and Caputo–Fabrizio model with distributed time-delay and without delay, the integer-order model with distributed delay are compared. These show that the fractional-order model can be better in fitting the real data. Moreover, Caputo order is better in short-term time fitting, Caputo–Fabrizio order is better in long-term fitting and prediction. Finally, the influence of several parameters is simulated in Caputo order model, which further verifies the importance of taking strict quarantine measures and paying close attention to the incubation period population.


2015 ◽  
Vol 8 (4) ◽  
pp. 93
Author(s):  
Muhammad Aqib ◽  
Jonathan Cazalas

With the advent in mobile and internet technologies, there is a significant increase in the number of users using smartphones and other internet based applications. There are a large number of applications available online that use the internet and provide useful information to the users. These include ones that provide location-based services e.g. google maps etc. These applications provide many facilities to the users who want information regarding a specific area or directions using an optimal path to a destination. Due to these reasons, the number of clients using these applications is increasing on a daily basis. Although these services are very useful and are making it easy for us to get information about our surroundings, some issues are also linked with the use of these applications and their services. One of the more significant issues of using these services is privacy with respect to sending personal location information to location-based services servers. Researchers have provided many solutions to solve these issues. One of the solutions is through caching and use of k-anonymity techniques. In this paper, we have proposed a method to solve the privacy issue that uses caching data approach to reduce the number of queries sent to the location-based services server. We also discuss the use of the concept of k-anonymity when no relevant data is available in cache, and queries are sent to the server.


2018 ◽  
Vol 7 (9) ◽  
pp. 334
Author(s):  
Chi-Hua Chen ◽  
Kuen-Rong Lo

This editorial introduces the special issue entitled “Applications of Internet of Things”, of ISPRS International Journal of Geo-Information. Topics covered in this issue include three main parts: (I) intelligent transportation systems (ITS), (II) location-based services (LBS), and (III) sensing techniques and applications. Three papers on ITS are as follows: (1) “Vehicle positioning and speed estimation based on cellular network signals for urban roads,” by Lai and Kuo; (2) “A method for traffic congestion clustering judgment based on grey relational analysis,” by Zhang et al.; and (3) “Smartphone-based pedestrian’s avoidance behavior recognition towards opportunistic road anomaly detection,” by Ishikawa and Fujinami. Three papers on LBS are as follows: (1) “A high-efficiency method of mobile positioning based on commercial vehicle operation data,” by Chen et al.; (2) “Efficient location privacy-preserving k-anonymity method based on the credible chain,” by Wang et al.; and (3) “Proximity-based asynchronous messaging platform for location-based Internet of things service,” by gon Jo et al. Two papers on sensing techniques and applications are as follows: (1) “Detection of electronic anklet wearers’ groupings throughout telematics monitoring,” by Machado et al.; and (2) “Camera coverage estimation based on multistage grid subdivision,” by Wang et al.


Sign in / Sign up

Export Citation Format

Share Document