scholarly journals Current Input Pixel-Level ADC with High SNR and Wide Dynamic Range for a Microbolometer

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2354
Author(s):  
Jeongho Lee ◽  
Ilku Nam ◽  
DooHyung Woo

A readout circuit incorporating a pixel-level analog-to-digital converter (ADC) is studied for two-dimensional medium wavelength infrared microbolometer arrays. The signal-to-noise ratio (SNR) and charge handling capacity of the unit cell circuit are improved by using the current input pixel-level ADC. The charge handling capacity of the integrator is appropriately extended to maximize the integration time regardless of the magnitude of the input current and low power supply voltage. The readout circuit was fabricated using a 0.35-μm 2-poly 4-metal CMOS process for a 640 × 512 array with a pixel size of 40 μm × 40 μm. The peak SNR and dynamic range are 77.1 and 80.1 dB, respectively, with a power consumption of 0.62 μW per pixel.


Author(s):  
Mateus B. Castro ◽  
Raphael R. N. Souza ◽  
Agord M. P. Junior ◽  
Eduardo R. Lima ◽  
Leandro T. Manera

AbstractThis paper presents the complete design of a phase locked loop-based clock synthesizer for reconfigurable analog-to-digital converters. The synthesizer was implemented in TSMC 65 nm CMOS process technology and the presented results were obtained from extracted layout view with parasitics. The synthesizer generates clock frequencies ranging from 40 to 230 MHz considering a reference frequency of 10 MHz and a supply voltage of 1.2 V. Worst case current consumption is 634 $$\mu $$ μ W, settling time is 6 $$\mu $$ μ s, maximum jitter is 1.3 ns in a 0.037 mm$$^2$$ 2 area. Performance was validated in a test $$\Sigma \Delta $$ Σ Δ Modulator with bandwidths of 200 kHz, 500 kHz and 2 MHz, and oversampling frequencies of 40, 60 and 80 MHz respectively, with negligible signal-to-noise ratio degradation compared to an ideal clock.



Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2856
Author(s):  
Fang Tang ◽  
Qiyun Ma ◽  
Zhou Shu ◽  
Yuanjin Zheng ◽  
Amine Bermak

This paper presents a 10 bit 100 MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) without calibration for industrial control system (ICS) applications. Several techniques are adopted in the proposed switching procedure to achieve better linearity, power and area efficiency. A single-side-fixed technique is utilized to reduce the number of capacitors; a parallel split capacitor array in combination with a partially thermometer coded technique can minimize the switching energy, improve speed, and decrease differential non-linearity (DNL). In addition, a compact timing-protection scheme is proposed to ensure the stability of the asynchronous SAR ADC. The proposed ADC is fabricated in a 28 nm CMOS process with an active area of 0.026 mm2. At 100 MS/s, the ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 51.54 dB and a spurious free dynamic range (SFDR) of 55.12 dB with the Nyquist input. The measured DNL and integral non-linearity (INL) without calibration are +0.37/−0.44 and +0.48/−0.63 LSB, respectively. The power consumption is 1.1 mW with a supply voltage of 0.9 V, leading to a figure of merit (FoM) of 35.6 fJ/conversion-step.



2015 ◽  
Vol 743 ◽  
pp. 244-247
Author(s):  
R. Zou

A fully-differential switched-capacitor sample-and-hold amplifier (SHA) used in a 10-bit 30-MS/s pipeline analog-to-digital converter (ADC) was designed using a 0.13-μm CMOS process. Flip-around architecture was used in the SHA circuit to lower the power consumption. A gain-boosted operational amplifier (OPAMP) was designed with a DC gain of 87 dB and a unit gain bandwidth of 388MHz at a phase margin of 75 degree. The simulated results have shown that the SHA circuit reaches a spurious free dynamic range (SFDR) of 94 dB and a signal-to-noise ratio (SNR) of 76 dB for a 10.18 MHz input signal with 30 MS/s sampling rate.



Circuit World ◽  
2019 ◽  
Vol 45 (2) ◽  
pp. 80-85
Author(s):  
Tian Lei ◽  
Nan Gong ◽  
Li Wang ◽  
Qin Qin Li ◽  
Heng Wei Wang

Purpose Because of the logic delay in the converter, the minimum turn on time of the switch is influenced by the constant time. When the inductor current gets to the threshold of the chip, the control signal will delay for a period. This makes the inductor current rising with the increasing of the clock and leads to the load current out of control. Thus, this paper aims to design an oscillator with a variable frequency protection function. Design/methodology/approach This paper presents an oscillator with the reducing frequency applied in the DC-DC converter. When the converter works normally, the operating frequency of the oscillator is 1.5 MHz. So the inductor current has enough time to decay and prevent the power transistor damaging. After the abnormal condition, the converter returns to the normal operating mode automatically. Findings Based on 0.5 µm CMOS process, simulated by the HSPICE, the simulation results shows that the frequency of the oscillator linearly decreases from 1.5 MHz to 380 KHz when the feedback voltage less than 0.2 V. The maximum deviation of the oscillator frequency is only 6 per cent from −50°C to 125°C within the power supply voltage of 2.7-5.5 V. Originality/value When the light load occurs at the output stage, the oscillator frequency will decrease as the load voltage drops. The test results shows that when the circuit works in the normal condition, the oscillator frequency is 1.5 MHz. When the load decreased, the operating frequency is dropped dramatically.



2018 ◽  
Vol 27 (07) ◽  
pp. 1850104 ◽  
Author(s):  
Yuwadee Sundarasaradula ◽  
Apinunt Thanachayanont

This paper presents the design and realization of a low-noise, low-power, wide dynamic range CMOS logarithmic amplifier for biomedical applications. The proposed amplifier is based on the true piecewise linear function by using progressive-compression parallel-summation architecture. A DC offset cancellation feedback loop is used to prevent output saturation and deteriorated input sensitivity from inherent DC offset voltages. The proposed logarithmic amplifier was designed and fabricated in a standard 0.18[Formula: see text][Formula: see text]m CMOS technology. The prototype chip includes six limiting amplifier stages and an on-chip bias generator, occupying a die area of 0.027[Formula: see text]mm2. The overall circuit consumes 9.75[Formula: see text][Formula: see text]W from a single 1.5[Formula: see text]V power supply voltage. Measured results showed that the prototype logarithmic amplifier exhibited an 80[Formula: see text]dB input dynamic range (from 10[Formula: see text][Formula: see text]V to 100[Formula: see text]mV), a bandwidth of 4[Formula: see text]Hz–10[Formula: see text]kHz, and a total input-referred noise of 5.52[Formula: see text][Formula: see text]V.



2021 ◽  
pp. 2140002
Author(s):  
Yanbo Chen ◽  
Shubin Zhang

Phase Locked Loop (PLL) circuit plays an important part in electronic communication system in providing high-frequency clock, recovering the clock from data signal and so on. The performance of PLL affects the whole system. As the frequency of PLL increases, designing a PLL circuit with lower jitter and phase noise becomes a big challenge. To suppress the phase noise, the optimization of Voltage Controlled Oscillator (VCO) is very important. As the power supply voltage degrades, the VCO becomes more sensitive to supply noise. In this work, a three-stage feedforward ring VCO (FRVCO) is designed and analyzed to increase the output frequency. A novel supply-noise sensing (SNS) circuit is proposed to suppress the supply noise’s influence on output frequency. Based on these, a 1.2 V 2 GHz PLL circuit is implemented in 110 nm CMOS process. The phase noise of this CMOS charge pump (CP) PLL is 117 dBc/Hz@1 MHz from test results which proves it works successfully in suppressing phase noise.



Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1551 ◽  
Author(s):  
Jianwen Li ◽  
Xuan Guo ◽  
Jian Luan ◽  
Danyu Wu ◽  
Lei Zhou ◽  
...  

This paper presents a four-channel time-interleaved 3GSps 12-bit pipelined analog-to-digital converter (ADC). The combination of master clock sampling and delay-adjusting is adopted to remove the time skew due to channel mismatches. An early comparison scheme is used to minimize the non-overlapping time, where a custom-designed latch is developed to replace the typical non-overlapping clock generator. By using the dither capacitor to generate an equivalent direct current input, a zero-input-based calibration is developed to correct the capacitor mismatch and inter-stage gain error. Fabricated in a 40 nm CMOS process, the ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 57.8 dB and a spurious free dynamic range (SFDR) of 72 dB with a 23 MHz input tone. It can achieve an SNDR above 52.3 dB and an SFDR above 61.5 dB across the entire first Nyquist zone. The differential and integral nonlinearities are −0.93/+0.73 least significant bit (LSB) and −2.8/+4.3 LSB, respectively. The ADC consumes 450 mW powered at 1.8V, occupies an active area of 3 mm × 1.3 mm. The calculated Walden figure of merit reaches 0.44 pJ/step.



Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2033
Author(s):  
Ahmed Elgreatly ◽  
Ahmed Dessouki ◽  
Hassan Mostafa ◽  
Rania Abdalla ◽  
El-sayed El-Rabaie

Time-based analog-to-digital converter is considered a crucial part in the design of software-defined radio receivers for its higher performance than other analog-to-digital converters in terms of operation speed, input dynamic range and power consumption. In this paper, two novel voltage-to-time converters are proposed at which the input voltage signal is connected to the body terminal of the starving transistor rather than its gate terminal. These novel converters exhibit better linearity, which is analytically proven in this paper. The maximum linearity error is reduced to 0.4%. In addition, the input dynamic range of these converters is increased to 800 mV for a supply voltage of 1.2 V by using industrial hardware-calibrated TSMC 65 nm CMOS technology. These novel designs consist of only a single inverter stage, which results in reducing the layout area and the power consumption. The overall power consumption is 18 μW for the first proposed circuit and 15 μW for the second proposed circuit. The novel converter circuits have a resolution of 5 bits and operate at a maximum clock frequency of 500 MHz.



2019 ◽  
Vol 29 (10) ◽  
pp. 2020005
Author(s):  
Hao Wang ◽  
Wenming Xie ◽  
Zhixin Chen

A novel area-efficient switching scheme is proposed for the successive approximation register (SAR) analog-to-digital converters (ADCs). The capacitor-splitting structure, charge-average switching technique, and [Formula: see text] (equal to [Formula: see text]/4) are combined together and optimized to realize the proposed switching scheme. [Formula: see text] is only used in the last two bit cycles, which affects the ADC accuracy little and reduces capacitor area by half. It achieves a 98% less switching energy and an 87.5% less capacitor area compared with the conventional switching method. In addition, the DAC output common-mode voltage is approximately constant. Thus, the proposed switching method is a good tradeoff among power consumption, capacitor area, DAC output common-mode voltage, and ADC accuracy. The proposed SAR ADC is simulated in 0.18[Formula: see text][Formula: see text]m CMOS technology with a supply voltage of 0.6[Formula: see text]V and at a sampling rate of 20[Formula: see text]kS/s. The signal-to-noise-distortion ratio (SNDR) and spurious free dynamic range (SFDR) are 58.2 and 73.7[Formula: see text]dB, respectively. The effective number of bits (ENOB) is 9.4. It consumes 42[Formula: see text]nW, resulting in a figure-of-merit (FoM) of 3.11 fJ/conversion-step.



2013 ◽  
Vol 22 (10) ◽  
pp. 1340024
Author(s):  
HAO LUO ◽  
YAN HAN ◽  
RAY C. C. CHEUNG ◽  
TIANLIN CAO ◽  
XIAOPENG LIU ◽  
...  

This paper provides an audio 2-1 cascaded ΣΔ modulator using a novel gain-boost class-C inverter. The gain-boost class-C inverter behaves as a subthreshold amplifier. By introducing a gain-boost module, the inverter DC-gain is increased from 48 dB to 67 dB. The gain-boost class-C inverter consumes 57 μW at 1.2-V supply, where the gain-boost module consumes only 3 μW. In addition, an on-chip body bias technique is introduced to compensate the process and supply voltage variations of the class-C inverter. The proposed inverter-based ΣΔ modulator chip is implemented in 0.13-μm CMOS process, and achieves 86-dB peak-signal to noise and distortion ratio (SNDR) and 90-dB dynamic range (DR) over 22.05-KHz bandwidth at 1.2-V supply consuming 360 μW, which demonstrates that the gain-boost class-C inverter is particularly suitable for micro-power high-resolution applications.



Sign in / Sign up

Export Citation Format

Share Document