scholarly journals Bistatic Forward ISAR with DVB-T Transmitter of Opportunity

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6662
Author(s):  
Andon Dimitrov Lazarov ◽  
Todor Pavlov Kostadinov

The radar geometry defined by a spatially separated transmitter and receiver with a moving object crossing the baseline is considered as a Bistatic Forward Inverse Synthetic Aperture Radar (BFISAR). As a transmitter of opportunity, a Digital Video Broadcast-Terrestrial (DVB-T) television station emitting DVB-T waveforms was used. A system of vector equations describing the kinematics of the object was derived. A mathematical model of a BFISAR signal received after the reflection of DVB-T waveforms from the moving object was described. An algorithm for extraction of the object’s image including phase correction and two Fourier transformations applied over the received BFISAR signal—in the range and azimuth directions—was created. To prove the correctness of mathematical models of the object geometry, waveforms and signals, and the image extraction procedure, graphical results of simulation numerical experiments were provided.

2018 ◽  
Vol 931 ◽  
pp. 158-163 ◽  
Author(s):  
Pavel V. Pisarev ◽  
Aleksandr N. Anoshkin ◽  
Karina A. Maksimova

The present work is devoted to a numerical study of the acoustic characteristics of cubic and folded resonators of sound-absorbing structures (SAS). In the process of work, a physical statement of the problem and a mathematical model for predicting the effective acoustic properties of the SAS cells are formulated. The validation of the developed mathematical models was carried out. During the comparison of the results of a numerical solution with experimental studies, the difference did not exceed 3%. Based on the results of the numerical experiments, the most effective resonators were identified, and recommendations on the design of the SAS on their basis were formulated.


2014 ◽  
Vol 610 ◽  
pp. 52-59 ◽  
Author(s):  
Nurmakhan Tokenov ◽  
Muratkali Dzhamanbayev ◽  
Amangeldi Bekbayev ◽  
Damelya Eskendirova ◽  
Olimzhon Baimuratov

This article is devoted to creation of mathematical models of overhead transmission lines (OHTL), taking into account the glaze. In the studying and designing of transmission lines is often necessary to construct mathematical model taking into account the influence of natural factors and all the basic physical parameters affecting or hindering them. The main difficulties arise when describing the equation of oscillations, as they nonlinear. Numerical experiments and comparative analysis with previously reported models was presented. The main setting is the critical velocity of the wind flow and its dependence on the angle of attack to OHTL.


2018 ◽  
Vol 15 (1) ◽  
pp. 39-55
Author(s):  
V. B. Rudakov ◽  
V. M. Makarov ◽  
M. I. Makarov

The article considers the problem of determining the rational plans of the input sampling reliability and technical parameters of components of space technology, the totality of which is supplied to the Assembly plants for the manufacture of complex products of space technology. Problem statement and mathematical model based on the minimization of the economic costs of control and losses related to the risks of taking wrong decisions, are given in the article. The properties of the mathematical models are investigated, the algorithm for its optimization is developed. The result is an optimal plan for the sampling of sets of components, which includes: an optimal product mix subject to mandatory control of the aggregate and optimum risks of first and second kind, when acceptance number of statistical plan is zero. The latter circumstance is due to the high requirements of reliability and technical parameters of products of space technology.


2019 ◽  
Vol 97 ◽  
pp. 05023 ◽  
Author(s):  
Daler Sharipov ◽  
Sharofiddin Aynakulov ◽  
Otabek Khafizov

The paper deals with the development of mathematical model and numerical algorithms for solving the problem of transfer and diffusion of aerosol emissions in the atmospheric boundary layer. The model takes into account several significant parameters such as terrain relief, characteristics of underlying surface and weather-climatic factors. A series of numerical experiments were conducted based on the given model. The obtained results presented here show how these factors affect aerosol emissions spread in the atmosphere.


1998 ◽  
Vol 84 (6) ◽  
pp. 2154-2162 ◽  
Author(s):  
Cord Sturgeon ◽  
Albert D. Sam ◽  
William R. Law

Rapid measurement of glomerular filtration rate (GFR) by an inulin single-bolus technique would be useful, but its accuracy has been questioned. We hypothesized that reported inaccuracies reflect the use of inappropriate mathematical models. GFR was measured in 14 intact and 5 unilaterally nephrectomized conscious male Sprague-Dawley rats (mean weight 368 ± 12 g) by both single-bolus (25 mg/kg) and constant-infusion techniques (0.693 mg ⋅ kg−1 ⋅ min−1). The temporal decline in plasma inulin concentration was analyzed through biexponential curve fitting, which accounted for renal inulin loss before complete vascular and interstitial mixing. We compared our mathematical model based on empirical rationale with those of other investigators whose studies suggest inaccuracy of single-bolus methods. Our mathematical model yielded GFR values by single bolus that agreed with those obtained by constant infusion [slope = 0.94 ± 0.16 (SE); y intercept = 0.23 ± 0.64; r = 0.82]. In comparison to the data obtained by constant inulin infusion, this method yielded a very small bias of −0.0041 ± 0.19 ml/min. Two previously reported models yielded unsatisfactory values (slope = 1.46 ± 0.34, y intercept = 0.47 ± 1.5, r = 0.72; and slope = 0.17 ± 1.26, y intercept = 17.15 ± 5.14, r = 0.03). The biases obtained by using these methods were −2.21 ± 0.42 and −13.90 ± 1.44 ml/min, respectively. The data indicate that when appropriate mathematical models are used, inulin clearance after single-bolus delivery can be used to measure GFR equivalent to that obtained by constant infusion of inulin. Attempts to use methods of analysis for simplicity or expediency can result in unacceptable measurements relative to the clinical range of values seen.


1970 ◽  
Vol 19 (1-2) ◽  
pp. 141-141
Author(s):  
L. Gedda ◽  
G. Brenci ◽  
M. T. Lun

The theoretical relationship between the distribution of a given trait in a population of twin pairs and several genetic parameters has been examined. In particular, a series of mathematical models has been worked out, that, when applied to a twin population, nonselected for the occurrence of a given trait and nondiagnosed as to zygosity, leads to an estimate of:1) The MZ: DZ ratio in the population;2) The frequency of the genotype responsible for a given trait;3) The probability of manifestation of the trait;4) The value of epistatic factors.A further mathematical model affords the estimate of linkage in the hypothesis of simultaneous recording of more than one trait.


Author(s):  
Андрей Геннадьевич Деменков ◽  
Геннадий Георгиевич Черных

С применением математической модели, включающей осредненные уравнения движения и дифференциальные уравнения переноса нормальных рейнольдсовых напряжений и скорости диссипации, выполнено численное моделирование эволюции безымпульсного закрученного турбулентного следа с ненулевым моментом количества движения за телом вращения. Получено, что начиная с расстояний порядка 1000 диаметров от тела течение становится автомодельным. На основе анализа результатов численных экспериментов построены упрощенные математические модели дальнего следа. Swirling turbulent jet flows are of interest in connection with the design and development of various energy and chemical-technological devices as well as both study of flow around bodies and solving problems of environmental hydrodynamics, etc. An interesting example of such a flow is a swirling turbulent wake behind bodies of revolution. Analysis of the known works on the numerical simulation of swirling turbulent wakes behind bodies of revolution indicates lack of knowledge on the dynamics of the momentumless swirling turbulent wake. A special case of the motion of a body with a propulsor whose thrust compensates the swirl is studied, but there is a nonzero integral swirl in the flow. In previous works with the participation of the authors, a numerical simulation of the initial stage of the evolution of a swirling momentumless turbulent wake based on a hierarchy of second-order mathematical models was performed. It is shown that a satisfactory agreement of the results of calculations with the available experimental data is possible only with the use of a mathematical model that includes the averaged equations of motion and differential equations for the transfer of normal Reynolds stresses along the rate of dissipation. In the present work, based on the above mentioned mathematical model, a numerical simulation of the evolution of a far momentumless swirling turbulent wake with a nonzero angular momentum behind the body of revolution is performed. It is shown that starting from distances of the order of 1000 diameters from the body the flow becomes self-similar. Based on the analysis of the results of numerical experiments, simplified mathematical models of the far wake are constructed. The authors dedicate this work to the blessed memory of Vladimir Alekseevich Kostomakha.


2021 ◽  
Author(s):  
Ed Rutgers Durner

Abstract Plants are studied to understand their growth and development so that their quality and productivity can be optimised. Models are developed that can be simple and descriptive, or quite complex with numerous mathematical equations; their level of complexity is linked to their purpose. This summary serves as an introduction to mathematical models in horticulture. It is not a manual for modelling itself, but rather an overview of how important mathematical models are in horticultural production. Mathematical models are used extensively in horticulture both extrinsically, i.e. when calculating chilling hour accumulations and intrinsically, i.e. when applying fertilizer to a crop. In chilling calculations, developed models are used directly. Fertilizer recommendations were probably developed using a mathematical model. The first part of this article discusses models in general and reviews general characteristics of mathematical models. The second part outlines the major uses of mathematical modelling in modern horticultural production. Presentations of specific models are limited in order to present a general discussion of models with examples that will interest most horticulturists.


Author(s):  
A. Y Kuzyshyn ◽  
S. A Kostritsia ◽  
Yu. H Sobolevska ◽  
А. V Batih

Purpose. Taking into account the production and commissioning of modern high-speed rolling stock, the authors are aimed to analyze the currently created mathematical models describing the dynamic behavior of the air spring, systematize them and consider the advantages and disadvantages of each model type. Methodology. For the analysis, a comparative chronological method was used, which makes it possible to trace the development of several points of view, concepts, theories. In accordance with the adopted decision equations, the existing models of air springs were divided into three groups: mechanical, thermodynamic and finite-elements. When analyzing mathematical models, the influence of a number of parameters on the dynamic behavior of the air spring, such as disturbing force frequency, heat transfer, nonlinear characteristics of materials, the shape of the membrane, etc., was considered. Findings. A feature of mechanical models is the determination of input parameters based on the analysis of experimental results, requires access to complex measuring equipment and must be performed for each new model of an air spring separately. Unlike mechanical models, which allow taking into account the damping effect of an air spring in the horizontal and vertical direction, thermodynamic models are mainly focused on studying the dynamic behavior of an air spring in the vertical direction. The use of the finite element method makes it possible to most accurately reproduce the dynamic behavior of an air spring, however, it requires significant expenditures of time and effort to create a finite element model and perform calculations. Originality. Mathematical models of the dynamic behavior of an air spring are systematized, and the importance of their study in conjunction with a spatial mathematical model of high-speed rolling stock is emphasized. Practical value. The analysis of the mathematical models of the dynamic behavior of the air spring shows the ways of their further improvement, indicates the possibility of their use in the spatial mathematical model of the rolling stock in accordance with the tasks set. It will allow, even at the design stage of high-speed rolling stock, to evaluate its dynamic characteristic and traffic safety indicators when interacting with a railway track.


Sign in / Sign up

Export Citation Format

Share Document