scholarly journals Shear Performance of Optimized-Section Precast Slab with Tapered Cross Section

2018 ◽  
Vol 11 (1) ◽  
pp. 163 ◽  
Author(s):  
Hyunjin Ju ◽  
Sun-Jin Han ◽  
Hyo-Eun Joo ◽  
Hae-Chang Cho ◽  
Kang Kim ◽  
...  

The optimized-section precast slab (OPS) is a half precast concrete (PC) slab that highlights structural aesthetics while reducing the quantity of materials by means of an efficient cross-sectional configuration considering the distribution of a bending moment. However, since a tapered cross section where the locations of the top and bottom flanges change is formed at the end of the member, stress concentration occurs near the tapered cross section because of the shear force and thus the surrounding region of the tapered cross section may become unintentionally vulnerable. Therefore, in this study, experimental and numerical research was carried out to examine the shear behaviour characteristics and performance of the OPS with a tapered cross section. Shear tests were conducted on a total of eight OPS specimens, with the inclination angle of the tapered cross section, the presence of topping concrete and the amount of shear reinforcement as the main test variables and a reasonable shear-design method for the OPS members was proposed by means of a detailed analysis based on design code and finite-element analysis.

2020 ◽  
Vol 8 (2) ◽  
pp. 61-69
Author(s):  
Yoga Ornando ◽  
Ismeddiyanto ◽  
Iskandar Romey Sitompul

Semi precast slab is a combination of precast concrete which consist of the support beam and curve tile with the cast in place concrete. During the working process, support beam will support the entire load until the slab becomes solid. The study aims to identify the effect of using variations of support beam length towards deflection-load relationship, moment-curvature, crack pattern and cross-sectional dimensions caused by pure bending moments with the same maximum load. The variations of the support beam length are L = 3000 mm, L = 4000 mm, L = 5000 mm and L = 6000 mm which can affect the cross-sectional dimensions of the support beam. The method used in this study was the numerical method by using Abaqus 6.14 CAE software. Abaqus is one of the finite element analysis (FEA) programs to model and analysis the elements of the structure. The loading applied was an axial load which has increased until the support beam failed. The numerical analysis results are the increase of cross section dimension as the increasing of support beam length. The cross-sectional dimension are 100 mm x 60 mm; 110 mm x 65 mm; 110 mm x 70 mm; and 115 mm x 75 mm. The maximum load (Pmaks) was relative same while the support beam length increased are 1,52 kN; 1,53 kN; 1,53 kN and 1,55 kN. The collapse pattern on the support beam was a pure bending crack at the most significant bending moment region. The crack pattern showed the crack on the pull side of the beam in the direction of the stirrups.Semi precast slab is a combination of precast concrete which consist of the support beam and curve tile with the cast in place concrete. During the working process, support beam will support the entire load until the slab becomes solid. The study aims to identify the effect of using variations of support beam length towards deflection-load relationship, moment-curvature, crack pattern and cross-sectional dimensions caused by pure bending moments with the same maximum load. The variations of the support beam length are L = 3000 mm, L = 4000 mm, L = 5000 mm and L = 6000 mm which can affect the cross-sectional dimensions of the support beam. The method used in this study was the numerical method by using Abaqus 6.14 CAE software. Abaqus is one of the finite element analysis (FEA) programs to model and analysis the elements of the structure. The loading applied was an axial load which has increased until the support beam failed. The numerical analysis results are the increase of cross section dimension as the increasing of support beam length. The cross-sectional dimension are 100 mm x 60 mm; 110 mm x 65 mm; 110 mm x 70 mm; and 115 mm x 75 mm. The maximum load (Pmaks) was relative same while the support beam length increased are 1,52 kN; 1,53 kN; 1,53 kN and 1,55 kN. The collapse pattern on the support beam was a pure bending crack at the most significant bending moment region. The crack pattern showed the crack on the pull side of the beam in the direction of the stirrups.


2017 ◽  
Vol 754 ◽  
pp. 333-336
Author(s):  
Joo Hong Chung ◽  
Hyun Ki Choi ◽  
Chang Sik Choi ◽  
Hyung Suk Jung

This study presents punching shear design method of voided slab in accordance with arrangement of voids around columns. According to previous studies, the slab-column connection of voided slabs is weaker than that of the solid slab due to the lack of cross-sectional area of concrete by voids. In this study, it is assumed that the arrangement of voids exert influence on the punching shear strength of voided slabs. To verify the assumption, finite element analysis was conducted related with previous test results. The variable of FE analysis was a distance between voids and column face. Based on FE analysis and test results including previous studies, punching shear design method is suggested which can consider the arrangement of voids around columns. The suggested design method is based on the punching shear design method in ACI-318. As a result, it can predict the punching shear strength of voided slabs according to arrangement of voids around column.


2021 ◽  
Vol 11 (2) ◽  
pp. 506
Author(s):  
Sun-Jin Han ◽  
Inwook Heo ◽  
Jae-Hyun Kim ◽  
Kang Su Kim ◽  
Young-Hun Oh

In this study, experiments and numerical analyses were carried out to examine the flexural and shear performance of a double composite wall (DCW) manufactured using a precast concrete (PC) method. One flexural specimen and three shear specimens were fabricated, and the effect of the bolts used for the assembly of the PC panels on the shear strength of the DCW was investigated. The failure mode, flexural and shear behavior, and composite behavior of the PC panel and cast-in-place (CIP) concrete were analyzed in detail, and the behavioral characteristics of the DCW were clearly identified by comparing the results of tests with those obtained from a non-linear flexural analysis and finite element analysis. Based on the test and analysis results, this study proposed a practical equation for reasonably estimating the shear strength of a DCW section composed of PC, CIP concrete, and bolts utilizing the current code equations.


2021 ◽  
Author(s):  
Richárd Horváth ◽  
Vendel Barth ◽  
Viktor Gonda ◽  
Mihály Réger ◽  
Imre Felde

Abstract In this paper, we study the energy absorption of metamaterials composed of unit cells whose special geometry makes the cross-sectional area and the volume of the bodies generated from them constant (for the same enclosing box dimensions). After a parametric description of such special geometries, we analyzed by finite element analysis the deformation of the metamaterials we have designed during compression. We 3D printed the designed metamaterials from plastic to subject them to real compression. The results of the finite element analysis were compared with the real compaction results. Then, for each test specimen, we plotted its compaction curve. By fitting a polynomial to the compaction curves and integrating it (area under the curve), the energy absorption of the samples can be obtained. As a result of these investigations, we drew a conclusion about the relationship between energy absorption and cell number.


Author(s):  
Lawrence N Virgin

Locating the shear, or flexural, center of non-symmetric cross-sectional beams is a key element in the teaching of structural mechanics. That is, establishing the point on the plane of the cross-section where an applied load, generating a bending moment about a principal axis, results in uni-directional deflection, and no twisting. For example, in aerospace structures it is particularly important to assess the propensity of an airfoil section profile to resist bending and torsion under the action of aerodynamic forces. Cross-sections made of thin-walls, whether of open or closed form are of special practical importance and form the basis of the material in this paper. The advent of 3D-printing allows the development of tactile demonstration models based on non-trivial geometry and direct observation.


2010 ◽  
Vol 168-170 ◽  
pp. 2434-2438 ◽  
Author(s):  
Yan Hong Xu ◽  
Ai Qun Li ◽  
Xing De Zhou ◽  
Peng Sun

This paper presented a new mild steel slit damper(SSD). The new shape was parabolic according to all the cross section having the same maximal stress, and the elastic stiffness and yield displacement formula were derived. Finite element analysis showed that the parabolic shaped damper had a more reasonable load - displacement curve compared with the previously proposed shape. The theoretical stiffness and yield displacement were consistent with the results by finite element method (FEM), and that indicated the presented design method was simple and feasible.


Author(s):  
W. P. Munsell, Jr.

Abstract Researchers have attempted to evaluate the likelihood of hip fracture as a function of an engineering concept called the moment of inertia, as applied to the cross-sectional area of hip bones. While the premise is sound, the results have been disappointing. Although several authors have acknowledged that errors may arise in the current methods investigators employ to determine the cross section moment of inertia (CSMI), none have looked critically at the sources, or even the magnitude, of those errors. This paper evaluates the nature of the error that can be introduced by the use of one-dimensional bone mineral density scans to estimate the CSMI and quantifies its impact on predictive calculations. In addition, this paper presents an improved method for approximating the mechanical section properties of highly complex cross sections. The factors affecting the accuracy of the proposed method are tested, and its error rate is also quantified. The method employs a two-dimensional analysis of digital images of the subject cross section and does not require extensive user expertise or investment in expensive finite element analysis programs to implement. The limited file space necessary to install the required code means that standard smart phones could be used to directly evaluate the most complex cross section in the field.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 316 ◽  
Author(s):  
Yongquan Zhang ◽  
Hong Lu ◽  
He Ling ◽  
Yang Lian ◽  
Mingtian Ma

The cross-sectional shape of a linear guideway has been processed before the straightening process. The cross-section features influence not only the position of the neutral axis, but also the applied and residual stresses along the longitudinal direction, especially in a multi-step straightening process. This paper aims to present an analytical model based on elasto-plastic theory and three-point reverse bending theory to predict straightening stroke and longitudinal stress distribution during the multi-step straightening process of linear guideways. The deviation of the neutral axis is first analyzed considering the asymmetrical features of the cross-section. Owing to the cyclic loading during the multi-step straightening process, the longitudinal stress curves are then calculated using the linear superposition of stresses. Based on the cross-section features and the superposition of stresses, the bending moment is corrected to improve the predictive accuracy of the multi-step straightening process. Finite element analysis, as well as straightening experiments, have been performed to verify the applicability of the analytical model. The proposed approach can be implemented in the multi-step straightening process of linear guideways with similar cross-sectional shape to improve the straightening accuracy.


2014 ◽  
Vol 679 ◽  
pp. 1-5 ◽  
Author(s):  
Sumayah Abdulsalam Mustafa ◽  
Mohd Zulham Affandi bin Mohd Zahid ◽  
Md.Hadli bin Abu Hassan

Cross sectional areas optimization is to be implemented to study the influence of the cross section shape on the optimum truss weight. By the aid of analysis and design engines with advanced finite element analysis that is the steel design software STAAD. Four rolled steel sections (angle, tube, channel, and pipe) which are used in industrial roof trusses are applied for comparison. Many previous studies, use the areas of cross sections as design variables without highlight to the shape of cross section at the start of the process, consequently the result area will be adequate if the designer choose the effective shape than others. Results of this research show that the chosen cross section shape has a significant impact on the optimum truss weight for same geometry of truss type under the same circumstances of loading and supports.


Webology ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 445-461
Author(s):  
Ibini Emueje ◽  
Henry Odigwe Olannye ◽  
A.P. Olanye

Resilience is a vibrant process of adaptation which enables entrepreneurs to constantly direct a futuristic aspiration despite the volatile conditions of a market. The study examined entrepreneurial resilience on the performance of small and medium enterprises organization in Asaba, Delta State. The cross-sectional research survey research design method was employed. The study adopted the stratified random sampling technique. The sample size used was limited to 201 respondents. A structured questionnaire was the research instrument employed in the study. Descriptive statistics as well as multiple regression analysis was used to analyse the data collected. Findings showed overwhelmingly that resourcefulness, strategic diversity and pro-activeness has a substantial positive relationship with organizational performance. The study concluded that entrepreneurial resilience has a positive effect on organizational performance. The study result showed that resourcefulness has the highest affirmative effect on organizational performance. Thus, the study recommended that if enterprises understand the nature of the association amid the dimensions of entrepreneurial resilience, the failure rate of small and medium enterprises can be reduced.


Sign in / Sign up

Export Citation Format

Share Document