scholarly journals Role of Integrated Nutrient Management and Agronomic Fortification of Zinc on Yield, Nutrient Uptake and Quality of Wheat

2020 ◽  
Vol 12 (9) ◽  
pp. 3513 ◽  
Author(s):  
Venkatesh Paramesh ◽  
Shiva Dhar ◽  
Anchal Dass ◽  
Bipin Kumar ◽  
Amit Kumar ◽  
...  

Phosphorus (P) and zinc (Zn) are essential plant nutrients, and their deficiency in soils and the antagonistic effect of P on Zn are important concerns world-over. Thus, a two-year (2012–13 to 2013–14) experimentation was carried out to assess grain yield, nutrient uptake and quality parameters of wheat by various levels of P and Zn. The results revealed that 50% recommended dose of P (RDP) through phospho-enriched compost (PEC) + 50% RDP through fertiliser and soil application of 12.5 kg ZnSO4.7H2O ha−1 + one foliar spray of 0.5% ZnSO4.7H2O recorded significantly higher grain yield (4.81 and 4.61 t ha−1, respectively), straw yield (7.20 and 6.92 t ha−1, respectively) and protein content (11.5% and 11.3%, respectively). The concentrations of Zn in grain (35.6%) and straw (57.3%) were not affected due to organic P application but 100% P through P fertilizer reduced the Zn content in the grains. Both soil and foliar application of Zn were found to be more promising in increasing Zn and Fe concentration in grains (37.5 and 30.9 mg kg−1, respectively) and straw (60.3 and 398 mg kg−1, respectively). Overall, the treatment combination of 50% RDP through PEC + 50% RDP through fertiliser and soil applied 12.5 kg ZnSO4.7H2O ha−1 + one spray of 0.5% Zn was beneficial in reducing antagonistic effect of P on Zn and increasing Zn and Fe concentration in wheat grain and, thus, could be used for improving the yield of Zn and Fe enriched wheat grains.

Author(s):  
E. Ajay Kumar ◽  
K. Surekha ◽  
K. Bhanu Rekha ◽  
S. Harish Kumar Sharma

A field experiment was conducted during Kharif 2018 at College Farm, College of Agriculture, PJTSAU to evaluate the effect of various sources of zinc and iron on grain yield, nutrient uptake and grain quality parameters of finger millet. The experiment was laid out in a randomized block design with 14 treatments and replicated thrice.The results revealed that application of different Zinc and iron sources at different rates significantly influenced the grain yield, nutrient (N, P and K) uptake and grain quality parameters (protein and calcium content) of finger millet. Highest grain yield (3653 kg ha-1), protein (11.25%) and calcium content (2.33%) in grain were obtained in the treatment receiving RDF + foliar application of FeSO4 @ 0.5% twice at 30 and 60 DAS which was on par with treatment receiving RDF + foliar application of Fe-humate twice at 30 and 60 DAS (3612 kg ha-1, 10.90% and 2.0%) and the lowest grain yield (1995 kg ha-1), (6.25%) and calcium content (1.10%) were recorded with application of RDF alone. The nutrient uptake (N, P, K and Fe) at all the crop growth stages was significantly higher with the treatment receiving RDF (60:40:30 kg N,P2O5 and K2O kg ha-1) + foliar application of FeSO4 @ 0.5% twice at 30 and 60 DAS which was on par with treatment receiving RDF+ foliar application of Fe-humate twice at 30 and 60 DAS. Highest iron uptake was recorded in treatment receiving RDF+foliar application of FeSO4 @ 0.5% twice at 30 and 60 DAS which was on par with T8, T14 treatments.The highest nutrient uptake of Zinc was obtained in treatment receiving RDF + Zn Humate foliar spray @ 0.25% twice at 30 and 60 days after sowing which was on par with treatment receiving RDF + Zn Humate soil  application. Contrary to the grain yield, nutrient uptake, protein and calcium content there were no significant differences between treatments with respect to Zn, Fe and carbohydrate content in grain.


Author(s):  
T. Ramesh ◽  
S. Rathika ◽  
T. Parthipan ◽  
V. Ravi

Field experiment was conducted during rice fallow season (January-March), 2011 and 2012 to study the effect of DAP application to preceding rice in last irrigation and foliar nutrition to black gram on the productivity and profitability of black gram(ADT 3) under rice fallow condition. The results indicated that application of DAP at 50 kg/ha to preceding rice in last irrigation and foliar spray of DAP (2 per cent) and KCl (1 per cent) at 30 and 45 days after sowing to black gram registered higher plant height (24.6 cm) at 20 DOS number of pods per plant (18.4), grain yield (639 kg/ha), net returns (Rs.22290/ha) and additional income (Rs. 7563/ha). Application of DAP at 50 kg/ha in last irrigation to preceding rice produced significantly higher grain yield of succeeding black gram (613 kg/ha.) over control (488 kg/ha) which was comparable with foliar application of 2 per cent DAP and 1 per cent KCl to black gram. With reference to return per rupee invested, application of DAP at 50 kg/ha to preceding rice in last irrigation registered higher benefit cost ratio of 3.56 in black gram.


2021 ◽  
Vol 13 (SI) ◽  
pp. 80-85
Author(s):  
G. Tamil Amutham ◽  
R. Karthikeyan ◽  
N. Thavaprakaash ◽  
C. Bharathi

The aim of the present study was to investigate the effect of agronomic biofortification with zinc on yield, nutritional quality, nutrient uptake and economics of babycorn under irrigated condition. The observations on yield viz., green cob yield, babycorn yield and green fodder yield and quality parameters (crude protein, total soluble sugars, starch and Zn content) were recorded at harvest stage. The nutrient uptake was analysed at different growth stages and economic indices viz., the total cost of cultivation, gross return, net return and benefit cost ratio were worked out for various zinc fertilization treatments. Increased green cob yield and babycorn yield was recorded higher in soil application of zinc sulphate @ 37.5 kg ha-1  along with a foliar spray of 1.0 % on 20 and 40 DAS. Quality parameters of babycorn viz., crude protein, total soluble sugars, starch and Zn content in corn were significantly increased with soil application of ZnSO4 @ 37.5 kg ha -1 along with a foliar spray of 0.5% at 20 and 40 DAS that recorded higher values of these quality characters. Plant nutrient uptake of N, K and Zn in babycorn was significantly increased with the application of ZnSO4 @ 37.5 kg ha -1 in soil with foliar spray of 0.5% at 20 and 40 DAS. Higher net monetary returns and B: C ratio were obtained with application of ZnSO4@ 37.5 kg ha -1in soil with foliar spray @ 0.5% on 20 and 40 DAS.  


1977 ◽  
Vol 34 (0) ◽  
pp. 551-563
Author(s):  
A.M.L. Neptune ◽  
T. Muraoka

An experiment was carried out with common bean (Phaseolus vulgaris, L.) in a Red Yellow Latossol, sandy phase, in order to study the influence of foliar spraying of the Hanway nutrient solution (NPKS) at grain filling stage on: 1) grain yield; 2) the uptake of fertilizer and soil nitrogen by this crop through the root system and 3) the efficiency of utilization of the nitrogen in the foliar spray solution by the grain. The results of this experiment showed that the foliar application of the Hanway solution with ammonium nitrate at the pod filling period caused severe leaf burn and grain yield was inferior to that of the plants which received a soil application of this fertilizer at the same stage. These facts can be attributed to the presence of ammonium nitrate in the concentration used. The composition of final spray was: 114,28 Kg NH4NO3 + 43,11 Kg potassium poliphosphate + 12,44 Kg potassium sulphate per 500 litres. The uptake of nitrogen fertilizer through the root system and the efficiency of its utilization was greater than that through the leaves.


2017 ◽  
Vol 38 (1) ◽  
pp. 47 ◽  
Author(s):  
Ijaz Ahmad ◽  
Shehzad Maqsood Ahmed Basra ◽  
Muhammad Akram ◽  
Allah Wasaya ◽  
Muhammad Ansar ◽  
...  

Heat stress during reproductive and grain filling phases adversely affects the growth of cereals through reduction in grain’s number and size. However, exogenous application of antioxidants, plant growth regulators and osmoprotectants may be helpful to minimize these heat induced yield losses in cereals. This two year study was conducted to evaluate the role of exogenous application of ascorbic acid (AsA), salicylic acid (SA) and hydrogen peroxide (H2O2) applied through seed priming or foliar spray on biochemical, physiological, morphological and yield related traits, grain yield and quality of late spring sown hybrid maize. The experiment was conducted in the spring season of 2007 and 2008. We observed that application of AsA, SA and H2O2 applied through seed priming or foliar spray improved the physiological, biochemical, morphological and yield related traits, grain yield and grain quality of late spring sown maize in both years. In both years, we observed higher superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity in the plants where AsA, SA and H2O2were applied through seed priming or foliar spray than control. Membrane stability index (MSI), relative water contents (RWC), chlorophyll contents, grain yield and grain oil contents were also improved by exogenous application of AsA, SA and H2O2 in both years. Seed priming of AsA, SA and H2O2was equally effective as the foliar application. In conclusion, seed priming with AsA, SA and H2O2 may be opted to lessen the heat induced yield losses in late sown spring hybrid maize. Heat tolerance induced by ASA, SA and H2O2 may be attributed to increase in antioxidant activities and MSI which maintained RWC and chlorophyll contents in maize resulting in better grain yield in heat stress conditions.


2017 ◽  
Vol 12 (Special-5) ◽  
pp. 1286-1290
Author(s):  
RAGHAVENDRA RAGHAVENDRA ◽  
K. NARAYANA RAO ◽  
S.P. WANI ◽  
M.V. RAVI ◽  
H. VEERESH ◽  
...  

2018 ◽  
pp. 49-51
Author(s):  
K. MUTHUMANICKAM, A. ANBURANI

Field investigation was carried out to study the influence of quality parameters and nutrient uptake of brinjal hybrids due to application of various levels of water soluble fertilizer. Foliar spray of NPK (19:19:19) at 0.5 per cent and 1% along with 100 and 75% recommended dose of NPK (200:150:100 kg ha-1) with 5 and 7 sprays, each starting from 30 DAT at 10 d interval, formed twenty treatments in two hybrids. Results showed that among the two different concentrations of foliar applied nutrients, 7 sprays of 1% NPK (19:19:19) along with 100 per cent recommended dose of fertilizer (200:150:100 kg ha-1) recorded the ascorbic acid content, total soluble solids (TSS) and total phenol content. Uptake of major nutrients was found to be the highest due to foliar application of 1 per cent water soluble fertilizer (7 sprays) along with 100 per cent recommended dose of fertilizer.


2019 ◽  
Vol 11 (17) ◽  
pp. 4799
Author(s):  
Wenting Jiang ◽  
Xiaohu Liu ◽  
Xiukang Wang ◽  
Lihui Yang ◽  
Yuan Yin

Optimizing the phosphorus (P) application rate can increase grain yield while reducing both cost and environmental impact. However, optimal P rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. The present study used field experiment conducted at 36 experiments sites for maize to determine the impact of P application levels on grain yield, plant P uptake, and P agronomy efficiency (AEP), P-derived yield benefits and private profitability, and to evaluated the agronomically (AOPR), privately (POPR), and economically (EOPR) optimal P rate at a regional scale. Four treatments were compared: No P fertilizer (P0); P rate of 45–60 kg ha−1 (LP); P rate of 90–120 kg ha−1 (MP); P rate of 135–180 kg ha−1 (HP). P application more effectively increased grain yield, reaching a peak at MP treatment. The plant P uptake in HP treatment was 37.4% higher than that in P0. The relationship between P uptake by plants (y) and P application rate (x) can be described by the equation y = −0.0003x2 + 0.1266x + 31.1 (R2 = 0.309, p < 0.01). Furthermore, grain yield (y) and plant P uptake (x) across all treatments also showed a significant polynomial function (R2 = 0.787–0.846). The MP treatment led to highest improvements in P agronomic efficiency (AEP), P-derived yield benefits (BY) and private profitability (BP) compared with those in other treatments. In addition, the average agronomically (AOPR), privately (POPR), and economically optimal P rate (EOPR) in 36 experimental sites were suggested as 127.9 kg ha−1, 110.8 kg ha−1, and 114.4 kg ha−1, which ranged from 80.6 to 211.3 kg ha−1, 78.2 to 181.8 kg ha−1, and 82.6 to 151.6 kg ha−1, respectively. Economically optimal P application (EOPR) can be recommended, because EOPR significantly reduced P application compared with AOPR, and average economically optimal yield was slightly higher compared with the average yield in the MP treatment. This study was conducive in providing a more productive, use-effective, profitable, environment-friendly P fertilizer management strategy for supporting maximized production potential and environment sustainable development.


1986 ◽  
Vol 26 (1) ◽  
pp. 115 ◽  
Author(s):  
AL Garside ◽  
MC Fulton

The primary and residual effects of phosphorus (P) fertilizer on soybeans (Glycine max cv. Buchanan) were studied at one site for three seasons on Cununurra clay in the Ord Irrigation Area. Grain yield increased (P< 0.01) with both primary and residual P in all seasons. When grain yields over the 3 years were standardized to eliminate seasonal effects, relative grain yield (RGY) was positively related to each of bicarbonate-extractable soil P (EP), applied fertilizer P (FP) and fertilizer P applied to the previous crop (PFP). Seventy-three per cent of the variation in relative yield within years could be explained by the equation: RGY = 45.44 + 0.64FP + l.84EP + 0.197PFP R 2 = 0 . 7 3 , P < 0.01 Increasing P status was associated with increased plant height, dry matter production and weight of 100 seeds and increased the number of main-stem nodes, nodules, pods per plant and days to maturity, but had no effect on number of seeds per pod and number of days until commencement and completion of flowering. Concentrations of P in the whole tops and uppermost leaf increased with increasing rate of P application. However, there was a significant P x growth stage interaction on nitrogen concentrations in whole tops and upper-most leaf, these being lower in the high-P plots early in the season. Grain protein content increased with increasing P status while oil content was reduced. The results show that rates of P application higher than those being currently used are required to maximize soybean yield on Cununurra clay.


2017 ◽  
Vol 4 (3) ◽  
pp. 157-164
Author(s):  
Mohammad Issak ◽  
Most Moslama Khatun ◽  
Amena Sultana

The experiment was conducted to study the effect of salicylic acid (SA) as foliar spray on yield and yield contributing characters of BRRI Hybrid dhan3.The experiment was laid out in a randomized complete block design (RCBD) with three replications and six treatment combinations as, T1: 0 μM SA, T2: 200 μM SA, T3: 400 μM SA, T4: 600 μM SA, T5: 800 μM SA and T6: 1000 μM SA. The results revealed that biomass production, dry matter production and yield and yield contributing characters were significantly increased due to the foliar application of SA. At the maximum tillering (MT) stage, the highest biomass production (15.0 t/ha) and dry matter production was observed in T3 treatment. Treatments T4, T5 and T6 showed significant variation on the effective tillers/hill. The maximum effective tillers/hill were found in the treatment T6. The percentages of spikelet sterility were decreased with increasing the level of SA and the percentage of filled grains/panicle were increased with increasing level of SA. The insect infestation was reduced with increasing level of SA to up to 1000 μM. The maximum grain yield (9.21 t/ha) and straw yield (9.22 t/ha) was found in the treatment T6 which was identical to T5. On the other hand, in all cases the lowest results were found in the control treatment. The result showed that grain yield of rice increased with increasing level of SA to up to 1000 μM (T6 treatment). Our results suggest that foliar spray of SA might be applied to increase the yield of hybrid rice in Bangladesh.Res. Agric., Livest. Fish.4(3): 157-164, December 2017


Sign in / Sign up

Export Citation Format

Share Document