scholarly journals Adsorption Studies of Arsenic(V) by CuO Nanoparticles Synthesized by Phyllanthus emblica Leaf-Extract-Fueled Solution Combustion Synthesis

2021 ◽  
Vol 13 (4) ◽  
pp. 2017
Author(s):  
Sadia Saif ◽  
Syed F. Adil ◽  
Mujeeb Khan ◽  
Mohammad Rafe Hatshan ◽  
Merajuddin Khan ◽  
...  

In the present study, a simple and eco-friendly route for the synthesis of copper oxide nanoparticles (CuO NPs) using leaf extract of Phyllanthus emblica as fuel has been demonstrated, as P. emblica is a locally available abundant plant. The formation of the as-prepared CuO NPs was confirmed by using various techniques, such as UV–Vis absorption spectroscopy, cold field scanning electron microscopy (CF–SEM), energy dispersive X-ray analysis (EDX), dynamic light scattering (DLS), and X-ray photoelectron (XPS). The hydrodynamic size of the CuO NPs was found to be 80 nm, while the zeta potential of −28.6 mV was obtained. The elemental composition was confirmed by EDX analysis accompanied with elemental mapping, while the crystalline nature was substantiated by the XRD diffractogram. The as-synthesized CuO NPs were studied for their use as an adsorbent material for the removal of As(V) from water. It was confirmed that the CuO NPs effectively removed As(V) via adsorption, and the adsorption efficiency was found to be best at a higher pH. The maximum adsorption capacity of CuO for As(V) was found to be 1.17 mg/g calculated using the Langmuir equation.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fozia Amin ◽  
Fozia ◽  
Baharullah Khattak ◽  
Amal Alotaibi ◽  
Muhammad Qasim ◽  
...  

The development of green technology is creating great interest for researchers towards low-cost and environmentally friendly methods for the synthesis of nanoparticles. Copper oxide nanoparticles (CuO-NPs) attracted many researchers due to their electric, catalytic, optical, textile, photonic, monofluid, and pharmacological activities that depend on the shape and size of the nanoparticles. This investigation aims copper oxide nanoparticles synthesis using Aerva javanica plant leaf extract. Characterization of copper oxide nanoparticles synthesized by green route was performed by three different techniques: X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, and Scanning Electron Microscopy (SEM). X-ray diffraction (XRD) reveals the crystalline morphology of CuO-NPs and the average crystal size obtained is 15 nm. SEM images showed the spherical nature of the particles and size is lying in the 15–23 nm range. FTIR analysis confirms the functional groups of active components present in the extract which are responsible for reducing and capping agents for the synthesis of CuO-NPs. The synthesized CuO-NPs were studied for their antimicrobial potential against different bacterial as well as fungal pathogens. The results indicated that CuO-NPs show maximum antimicrobial activities against all the selected bacterial and fungal pathogens. Antimicrobial activities of copper oxide nanoparticles were compared with standard drugs Norfloxacin and amphotericin B antibiotics. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of copper oxide nanoparticles were 128 μg/mL against all selected bacterial pathogens. MIC of fungus and minimum fungicidal concentration (MFC) of CuO-NPs were 160 μg/mL. Thus, CuO-NPs can be utilized as a broad-spectrum antimicrobial agent. The cytotoxic activity of the synthesized CuO-NPs suggested that toxicity was negligible at concentrations below 60 μg/mL.


2015 ◽  
Vol 4 (5) ◽  
Author(s):  
Rajesh Kumar ◽  
Shashi Kant Shukla ◽  
Anand Pandey ◽  
Sanjeev Kumar Srivastava ◽  
Anupam Dikshit

AbstractCopper oxide (CuO) is one of the most important transition metal oxides due to its unique properties. It is used in various technological applications such as high critical temperature, superconductors, gas sensors, in photoconductive applications and so on. Recently, it has been used as an antimicrobial agent against various pathogenic bacteria. In the present investigation, we studied the structural and antidermatophytic properties of CuO nanoparticles (NPs) synthesized by a precipitation technique. Copper sulfate was used as a precursor and sodium hydroxide as a reducing agent. Scanning electron microscopy (SEM) showed flower-shaped CuO NPs and X-ray diffraction (XRD) pattern showed the crystalline nature of CuO NPs. These NPs were evaluated against two prevalent species of dermatophytes, i.e.


2018 ◽  
Vol 15 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Sathish Mohan Botsa ◽  
Ramadevi Dharmasoth ◽  
Keloth Basavaiah

Background: During past two decades, functional nanomaterials have received great attention for many technological applications such as catalysis, energy, environment, medical and sensor due to their unique properties at nanoscale. However, copper oxide nanoparticles (NPs) such as CuO and Cu2O have most widely investigated for many potential applications due to their wide bandgap, high TC, high optical absorption and non-toxic in nature. The physical and chemical properties of CuO and Cu2O NPs are critically depending on their size, morphology and phase purity. Therefore, lots of efforts have been done to prepare phase CuO and Cu2O NPs with different morphology and size. Method: The synthesis of cupric oxide (CuO) and cuprous oxide (Cu2O) NPs using copper acetate as a precursor by varying the reducing agents such as hydrazine sulphate and hydrazine hydrate via sonochemical method. The phase, morphology and crystalline structure of a prepared CuO and Cu2O NPs were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDS) and UV-Visible Diffuse reflectance spectroscopy (DRS). Results: The phase of NPs was tuned as a function of reducing agents.XRD patterns confirmed the formation of pure phase crystalline CuO and Cu2O NPs. FTIR peak at 621 cm-1 confirmed Cu(I)-O vibrations, while CuO vibrations confirmed by the presence of two peaks at 536 and 586 cm-1. Further investigation was done by Raman, which clearly indicates the presence of peaks at 290, 336, 302 cm-1 and 173, 241 cm-1 for CuO and Cu2O NPs, respectively. The FESEM images revealed rod-like morphology of the CuO NPs while octahedral like shape for Cu2O NPs. The presence of elemental Cu and O in stoichiometric ratios in EDS spectra confirms the formation of both CuO and Cu2O NPs. In summary, CuO and Cu2O NPs were successfully synthesized by a sonochemical method using copper acetate as a precursor at different reducing agents. The bandgap of CuO and Cu2O NPs was 2.38 and 1.82, respectively. Furthermore, the phase purity critically depends on reducing agents.


2009 ◽  
Vol 24 (1) ◽  
pp. 245-252 ◽  
Author(s):  
Robert Ianoş

Single-phase nanocrystalline 4CaO·Al2O3·Fe2O3 powders were prepared directly from the combustion reaction using a new cost-effective, time-saving, and environmentally friendly version of solution combustion synthesis. Instead of a single fuel, a fuel mixture of urea and β-alanine was used. It was shown by x-ray diffraction, energy-dispersive x-ray analysis, thermogravimetric analysis, and optical microscopy that this new version of the solution combustion synthesis allows the maximization of the exothermic effect associated with the combustion reaction. On the other hand, it was shown that the traditional version of combustion synthesis involving the use of a single fuel, such as urea or β-alanine, does not ensure the formation of Ca4Al2Fe2O10 unless subsequent thermal treatments are applied. It was suggested that the occurrence of combustion reactions cannot be regarded only in terms of adiabatic temperature, as the kinetic aspects overrule the thermodynamic ones.


2020 ◽  
Vol 32 (3) ◽  
pp. 501-507
Author(s):  
Krushitha Shetty ◽  
B.S. Prathibha ◽  
Dinesh Rangappa ◽  
K.S. Anantharaju ◽  
H.P. Nagaswarupa ◽  
...  

MgFe2O4 nanoferrites were synthesized by sol-gel and solution combustion synthesis (SCS) methods through green and chemical methods. Green and chemical methods for sol-gel were processed with use of lemon extract and citric acid, respectively. A green and chemical method for solution combustion synthesis was followed by using Phyllanthus acidus leaf extract and urea, respectively. The influence of synthesis approach on the behaviour of prepared nanoferrites were studied using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and UV visible spectroscopy, vast variation in particle size, crystallinity, electrochemical and photocatalytic activity of the nanoferrites synthesized by various methods were witnessed. Powder X-ray diffraction (PXRD) result of prepared nanoferrites acquired by green and chemical approaches clarified phase structure as spinel and the crystalline size found to be around 11-24 nm. The spinel surface morphology was witnessed for the synthesized nanoferrites. The tetrahedral and octahedral sites of the prepared nanoferrites were confirmed by FTIR spectra. MgFe2O4 nanoferrites synthesized by green sol-gel approach exposed superior electrochemical activity by possessing very less charge transfer resistance. The results of EIS were correlated with the photocatalytic degradation of Rose Bengal dye. Photocatalytic property of the prepared nanoferrites was examined for photodegradation of Rose Bengal dye under UV-light.


2013 ◽  
Vol 802 ◽  
pp. 84-88
Author(s):  
Sagulthai Kahatta ◽  
Nopsiri Chaiyo ◽  
Chesta Ruttanapun ◽  
Wicharn Techitdheera ◽  
Wisanu Pecharapa ◽  
...  

The microwave-assisted solution combustion synthesis was applied to the initial synthesizing of Ca3Co2O6powder using glycine as a fuel and nitrate as an oxidant. The as-synthesized powders were calcined at 700-1,000ºC for 4h. Product characterization was performed using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Scanning electron microscope (SEM). The fuel-to-oxidizer molar ratio was found to affect the combustion reaction and character of the powder obtained. The phase composition of powder after calcination at various temperatures has shown that the formation of Ca3Co2O6occurs directly. The calcined powder possesses a rhombohedral crystal structure with an X-ray diffraction pattern that could be matched with the Ca3Co2O6JCPDS: 89-0629. This method is a simple way of synthesizing fine Ca3Co2O6powder with a low calcination temperature.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Maqusood Ahamed ◽  
Hisham A. Alhadlaq ◽  
M. A. Majeed Khan ◽  
Ponmurugan Karuppiah ◽  
Naif A. Al-Dhabi

We studied the structural and antimicrobial properties of copper oxide nanoparticles (CuO NPs) synthesized by a very simple precipitation technique. Copper (II) acetate was used as a precursor and sodium hydroxide as a reducing agent. X-ray diffraction patter (XRD) pattern showed the crystalline nature of CuO NPs. Field emission scanning electron microscope (FESEM) and field emission transmission electron microscope (FETEM) demonstrated the morphology of CuO NPs. The average diameter of CuO NPs calculated by TEM and XRD was around 23 nm. Energy dispersive X-ray spectroscopy (EDS) spectrum and XRD pattern suggested that prepared CuO NPs were highly pure. CuO NPs showed excellent antimicrobial activity against various bacterial strains (Escherichia coli,Pseudomonas aeruginosa,Klebsiella pneumonia,Enterococcus faecalis,Shigella flexneri,Salmonella typhimurium,Proteus vulgaris,andStaphylococcus aureus). Moreover,E. coliandE. faecalisexhibited the highest sensitivity to CuO NPs whileK. pneumoniawas the least sensitive. Possible mechanisms of antimicrobial activity of CuO NPs should be further investigated.


2019 ◽  
Vol 17 (11) ◽  
pp. 898-904
Author(s):  
K. Dhanalakshmi ◽  
A. Jagannatha Reddy

Flux Boric acid (H3BO3) doped on Y2SiO5:Dy3+ phosphors were synthesized by auto ignition based low temperature Solution Combustion Synthesis (SCS) using Oxalic acid dihydrate (ODH) as fuel. Powder X-ray diffraction (PXRD) patterns confirm the nano sized particles corresponding to JCPDS card 36-1476. The crystallite size of the samples estimated from Scherer's formula and Williamson-Hall (W-H) plots was found to be in the range ˜21 nm and 26 nm respectively. Scanning electron Microscope (SEM) micrographs infer addition of flux gives the enhanced grain growth and it attains smooth surface improves the crystallinity and particle morphology of the sample. Fourier transform Infrared (FTIR) data reveals the presence of M–O bonds and Y–O bonds and also the bands at 642 cm–1, 655 cm–1, 668 cm–1, 697 cm–1, 719 cm–1 are ascribed due to the B–O–B linkage in the borate network. Addition of flux on Thermoluminescence (TL) glow curves from 0.5 KGy–4 KGy acts as a sensitizer and the peak appearing at 185 °C is quite stable and can be named as "dosimetric peak" to use in TL phosphor. The kinetic parameters estimated by Chen's peak shape method was found to be second order with activation energy 0.82.


2012 ◽  
Vol 485 ◽  
pp. 473-477
Author(s):  
Gui Yang Liu ◽  
Jun Ming Guo ◽  
Li Li Zhang ◽  
Jing Wang ◽  
Bao Sen Wang ◽  
...  

LiAl0.1Mn1.9O4 materials were prepared by a solution combustion synthesis method. In order to improve the purity of the products, the effect of further calcination time was investigated. The phase compositions of the as-prepared products were determined by X-ray diffraction (XRD). The electrochemical performance of the products was tested by using a coin-type half battery versus lithium metal foil as anode material. XRD results suggested that the main phase of the products was LiAl0.1Mn1.9O4, and there was a trace amount Mn2O3 impurity in some of the products. The purity, crystallinity and grain size of the LiAl0.1Mn1.9O4 were increased with increasing further calcination time. Electrochemical experiments demonstrate that the initial discharge capacities of the products with further calcination time of 0, 6, 12 and 24h were 93.7, 105.7, 114.0 and 120.6mAh/g, and about 89.8, 89.5, 89.2 and 88.3% of the initial capacities were retained after 25 cycles, respectively. Further calcination time can enhance the initial capacity, but is not favorable for the cycle ability of the products.


Sign in / Sign up

Export Citation Format

Share Document