scholarly journals Kinetic and Isotherm Studies of Ni2+ and Pb2+ Adsorption from Synthetic Wastewater Using Eucalyptus camdulensis—Derived Biochar

2021 ◽  
Vol 13 (7) ◽  
pp. 3785
Author(s):  
Muhammad Shafiq ◽  
Abdulrahman Ali Alazba ◽  
Muhammad Tahir Amin

The production of biosorbents by waste biomass has attracted considerable attention due to the low cost and abundance of the raw materials. Here biochar produced from Eucalyptus camdulensis sawdust (EU-biochar) via pyrolysis at 600 °C was used as a potential biosorbent for Ni2+ and Pb2+ metal ions from wastewater. Characterization experiments indicated the formation of C- and O-bearing functional groups on the EU-biochar surface, while shifts and changes in the shape of C–H bands suggested the adsorption of Ni2+ and Pb2+ onto EU-biochar by interacting with surface carboxylic groups. Pb2+ was adsorbed more quickly than Ni2+, indicating a faster and stronger interaction of Pb2+ with EU-biochar compared to Ni2+. As the initial concentrations of both metal ions increased, the percentage removal decreased, whereas increasing the EU-biochar dose improved the percentage removal but impaired the adsorption capacity for Ni2+ and Pb2+. The adsorption capacity could only be improved without affecting the percentage removal of both ions by increasing the pH of the metal solutions. The sorption efficiency of EU-biochar and the removal mechanism of Ni2+ and Pb2+ were further explored using non-linear and linear forms of kinetic and isotherm models.

2016 ◽  
Vol 70 (3) ◽  
pp. 243-255
Author(s):  
Dragana Markovic ◽  
Danijela Bojic ◽  
Aleksandar Bojic ◽  
Goran Nikolic

The biosorption potential of waste biomass young fruit walnuts (YFW) as a low-cost biosorbent, processed from liqueur industry, for Pb(II) ions from aqueous solution was explored. The structural features of the biosorbent were characterized by FTIR spectroscopy, which indicates the possibility that the different functional groups may be responsible for the binding of Pb(II) ions from aqueous solution. The effects of relevant parameters such as pH (2 - 6), contact time (0 - 120 min), biosorbent dosage (2 - 20 g), initial metal ion concentration (10 - 120 mg dm-3), at a temperature of 25(C with stirring (120 rpm) and a constant ionic strength of 0,02 mol dm-3 were evaluated in batch experiments. The sorption equilibrium of Pb(II) ion (when 84 % of metal ions were sorbed at an initial concentration of 15 mg dm-3) was achieved within the pH range 4 - 5 after 50 min. Kinetic data were best described by the pseudo-second order model. Removal efficiency of Pb(II) ion rapidly increased with increasing biosorbent dose from 2.0 to 8.0 g per dm-3 of sorbate. Optimal biosorbent dose was set to 6.0 g per dm3 of sorbate. An increase in the initial metal concentration increases the biosorption capacity. The sorption data of investigated metal ion are fitted to Langmuir, Freundlich and Temkin isotherm models. The equilibrium data were well fitted by the Langmuir isotherm model (R2 ? 0.990). The maximum monolayer biosorption capacity of waste biomass YFW for Pb(II) ion, at 25.0 ? 0.5?C and pH 4.5, was found to be 19.23 mgg-1. This available waste biomass is efficient in the uptake of Pb(II) ions from aqueous solution and could be used as a low-cost and an alternative biosorbent for the treatment of wastewater streams bearing these metal ions.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Maria Harja ◽  
Gabriela Buema ◽  
Nicoleta Lupu ◽  
Horia Chiriac ◽  
Dumitru Daniel Herea ◽  
...  

Fly ash/magnetite material was used for the adsorption of copper ions from synthetic wastewater. The obtained material was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area, and vibrating sample magnetometer (VSM). Batch adsorption experiments were employed in order to investigate the effects of adsorbent dose, initial Cu (II) concentration and contact time over adsorption efficiency. The experimental isotherms were modeled using Langmuir (four types of its linearization), Freundlich, Temkin, and Harkins–Jura isotherm models. The fits of the results are estimated according to the Langmuir isotherm, with a maximum adsorption capacity of 17.39 mg/g. The pseudo-second-order model was able to describe kinetic results. The data obtained throughout the study prove that this novel material represents a potential low-cost adsorbent for copper adsorption with improved adsorption capacity and magnetic separation capability compared with raw fly ash.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3718
Author(s):  
Mohammad Azam ◽  
Saikh Mohammad Wabaidur ◽  
Mohammad Rizwan Khan ◽  
Saud I. Al-Resayes ◽  
Mohammad Shahidul Islam

The aim of the research was to prepare low-cost adsorbents, including raw date pits and chemically treated date pits, and to apply these materials to investigate the adsorption behavior of Cr(III) and Cd(II) ions from wastewater. The prepared materials were characterized using SEM, FT-IR and BET surface analysis techniques for investigating the surface morphology, particle size, pore size and surface functionalities of the materials. A series of adsorption processes was conducted in a batch system and optimized by investigating various parameters such as solution pH, contact time, initial metal concentrations and adsorbent dosage. The optimum pH for achieving maximum adsorption capacity was found to be approximately 7.8. The determination of metal ions was conducted using atomic adsorption spectrometry. The experimental results were fitted using isotherm Langmuir and Freundlich equations, and maximum monolayer adsorption capacities for Cr(III) and Cd(II) at 323 K were 1428.5 and 1302.0 mg/g (treated majdool date pits adsorbent) and 1228.5 and 1182.0 mg/g (treated sagai date pits adsorbent), respectively. It was found that the adsorption capacity of H2O2-treated date pits was higher than that of untreated DP. Recovery studies showed maximal metal elution with 0.1 M HCl for all the adsorbents. An 83.3–88.2% and 81.8–86.8% drop in Cr(III) and Cd(II) adsorption, respectively, were found after the five regeneration cycles. The results showed that the Langmuir model gave slightly better results than the Freundlich model for the untreated and treated date pits. Hence, the results demonstrated that the prepared materials could be a low-cost and eco-friendly choice for the remediation of Cr(III) and Cd(II) contaminants from an aqueous solution.


2016 ◽  
Author(s):  
A. Ribeiro ◽  
C. Vilarinho ◽  
J. Araújo ◽  
J. Carvalho

The increasing of world population, industrialization and global consuming, existing market products existed in the along with diversification of raw materials, are responsible for an exponential increase of wastes. This scenario represents loss of resources and ultimately causes air, soils and water pollution. Therefore, proper waste management is currently one of the major challenges faced by modern societies. Textile industries represents, in Portugal, almost 10% of total productive transforming sector and 19% of total employments in the sector composed by almost 7.000 companies. One of the main environmental problems of textile industries is the production of significant quantities of wastes from its different processing steps. According to the Portuguese Institute of Statistics (INE) these industries produce almost 500.000 tons of wastes each year, with the textile cotton waste (TCW) being the most expressive. It was estimated that 4.000 tons of TCW are produced each year in Portugal. In this work an integrated TCW valorisation procedure was evaluated, firstly by its thermal and energetic valorisation with slow pyrolysis followed by the utilization of biochar by-product, in lead and chromium synthetic wastewater decontamination. Pyrolysis experiments were conducted in a small scale rotating pyrolysis reactor with 0.1 m3 of total capacity. Results of pyrolysis experiments showed the formation of 0,241 m3 of biogas for each kilogram of TCW. Results also demonstrated that the biogas is mostly composed by hydrogen (22%), methane (14 %), carbon monoxide (20%) and carbon dioxide (12%), which represents a total high calorific value of 12.3 MJ/Nm3. Regarding biochar, results of elemental analysis demonstrated a high percentage of carbon driving its use as low cost adsorbent. Adsorption experiments were conducted with lead and chromium synthetic wastewaters (25, 50 and 100 mg L−1) in batch vessels with controlled pH. It was evaluated the behaviour of adsorption capacity and removal rate of each metal during 120 minutes of contact time using 5, 10 and 50 g L−1 of adsorbent dosage. Results indicated high affinity of adsorbent with each tested metal with 78% of removal rate in chromium and 95% in lead experiments. This suggests that biochar from TCW pyrolysis may be appropriated to wastewaters treatment, with high contents of heavy metals and it can be an effective alternative to activated carbon.


2017 ◽  
Vol 5 (7) ◽  
pp. 3434-3446 ◽  
Author(s):  
Mingyue Zhang ◽  
Lihua Song ◽  
Haifeng Jiang ◽  
Shu Li ◽  
Yifei Shao ◽  
...  

In order to achieve the reutilization of waste biomass soybean dregs, a low-cost hydrogel, soybean dregs–poly(acrylic acid) (SESD–PAA) was prepared through a one-step reaction.


2019 ◽  
Vol 9 (7) ◽  
Author(s):  
Kamalesh Sen ◽  
Jayanta Kumar Datta ◽  
Naba Kumar Mondal

Abstract In this study, orthophosphoric acid-modified activated char was prepared from Eucalyptus camaldulensis bark (EBAC), and used for removing traces of [N-(phosphonomethyl)glycine] (glyphosate) herbicide from aqueous solution. The adsorption capacity was characterized by zero-point-charge pH, surface analysis, and Fourier transform infrared spectroscopy. Batch mode experiments were conducted to observe the effects of selected variables, namely dose, contact time, pH, temperature, and initial concentration, on adsorption capacity. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models were generated to describe the mechanisms involved in the multilayer adsorption process. The results show that high temperature enhanced the adsorption capacity of EBAC, with a temperature of 373 K yielding adsorption capacity (qmax) and Freundlich parameter (KF) of 66.76 mg g−1 and 9.64 (mg g−1) (L mg−1)−n, respectively. The thermodynamics study revealed entropy and enthalpy of −5281.3 J mol−1 and −20.416 J mol−1, respectively. Finally, glyphosate adsorption was optimized by the Box–Behnken model, and optimal conditions were recorded as initial concentration of 20.28 mg L−1, pH 10.18, adsorbent dose of 199.92 mg/50 mL, temperature of 303.23 K, and contact time of 78.42 min, with removal efficiency of 98%. Therefore, it can be suggested that EBAC could be used as an efficient, low-cost adsorbent for removal of glyphosate from aqueous solutions.


2020 ◽  
Vol 10 (6) ◽  
pp. 1925 ◽  
Author(s):  
Loris Pietrelli ◽  
Iolanda Francolini ◽  
Antonella Piozzi ◽  
Maria Sighicelli ◽  
Ilaria Silvestro ◽  
...  

Chitosan is very effective in removing metal ions through their adsorption. A preliminary investigation of the adsorption of chromium(III) by chitosan was carried out by means of batch tests as a function of contact time, pH, ion competition, and initial chromium(III) concentration. The rate of adsorption was rather rapid (t1/2 < 18 min) and influenced by the presence of other metal ions. The obtained data were tested using the Langmuir and Freundlich isotherm models and, based on R2 values, the former appeared better applicable than the latter. Chitosan was found to have an excellent loading capacity for chromium(III), namely 138.0 mg Cr per g of chitosan at pH = 3.8, but metal ions adsorption was strongly influenced by the pH. About 76% of the recovered chromium was then removed simply by washing the used chitosan with 0.1 M EDTA (Ethylenediaminetetraacetic acid) solution. This study demonstrates that chitosan has the potential to become an effective and low-cost agent for wastewater treatment (e.g., tannery waste) and in situ environmental remediation.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Nady A. Fathy ◽  
Ola I. El-Shafey ◽  
Laila B. Khalil

The effectiveness of alkali-acid modification in enhancement the adsorption capacity of rice straw (RS) for removing a basic dye was studied. The obtained adsorbents were characterized by slurry pH, pHPZC, iodine number, methylene blue number, FTIR, and SEM analyses. Adsorption of methylene blue (MB) was described by the Langmuir, Freundlich, Tempkin, and Redlich-Peterson isotherm models. Effects of contact time, initial concentration of MB dye, pH of solution, adsorbent dose, salt concentration of NaCl, and desorbing agents on the removal of MB were reported. Kinetic studies were analyzed using the pseudo-first-order, pseudo-second-order, and the intraparticle diffusion models and were found to follow closely the pseudo-second-order model. Equilibrium data were best represented by the Langmuir and Redlich-Peterson isotherms. The adsorption capacities were varied between 32.6 and 131.5 mg/g for untreated and treated RS samples with NaOH-1M citric acid (ARS-1C), respectively. Adsorption behavior of the ARS-1C sample was experimented in a binary mixture containing methylene blue (basic) and reactive blue 19 (acidic) dyes which showed its ability to remove MB higher than RB19. Overall, the results indicate that the alkali-acid treatment proved to be potential modification for producing effective low-cost adsorbents for the removal of the basic dyes from wastewater.


2020 ◽  
Vol 10 (12) ◽  
Author(s):  
Tze Ling Kua ◽  
Muhammad Raziq Rahimi Kooh ◽  
Muhammad Khairud Dahri ◽  
Nur Afiqah Hazirah Mohamad Zaidi ◽  
YieChen Lu ◽  
...  

AbstractIpomoea aquatica (IA) was investigated for its potential as a low-cost adsorbent to remove toxic methyl violet 2B (MV2B) dye in aqueous solutions. Optimising parameters such as the effects of contact time, medium pH and ionic strength (using NaCl, NaNO3, KCl and KNO3) were investigated. The results indicated that 150 min were sufficient for the adsorption to reach an equilibrium state and no adjustment of pH medium was necessary. Batch adsorption experiments such as adsorption isotherm, thermodynamics and kinetics were investigated and the experimental isotherm data were fitted to six isotherm models, namely Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Redlich-Peterson and Sips, with the latter being the best-fit isotherm model showing maximum adsorption capacity (qmax) of 267.9 mg g−1. Thermodynamics studies indicated adsorption of MV2B to be exothermic in nature, occurring spontaneously. The kinetics was best described by the pseudo-second-order model. Regeneration of IA pointed to its reusability, maintaining high adsorption capacity even up until Cycle 5 when treated with acid (HCl) and base (NaOH). Functional groups such as hydroxyl and amine groups which could be involved in the adsorption of MV2B were determined using FTIR spectroscopy, and the point of zero charge of IA was found to be at pH 6.81.


2012 ◽  
Vol 549 ◽  
pp. 703-706
Author(s):  
De Yi Zhang ◽  
Jing Wu ◽  
Bai Yi Chen ◽  
He Ming Luo ◽  
Kun Jie Wang ◽  
...  

In this paper, a novel carbon/bentonite composite was prepared using sucrose as carbon source and bentonite as raw material. The characterization results shown that plenty of carbon particles distribute on the surface of the composite, and an abundant of functional groups, such as SO3H, carboxylic and hydroxyl groups, were successfully introduced onto the surface of the prepared composite. The adsorption capacity of the prepared composite for typical heavy metal ions and methylene blue deys also was investigated and compared with activated carbon and bentonite, the results show that the composite shows excellent adsorprion performance for heavy metal ions, and the adsorption capacity for Cu2+and Ni2+ increase by 136% and 591% than natural bentonite, respectSuperscript textively. The prepared composite with excellent adsorption performance could be used as a low-cost alternative to activated carbon for the treatment of heavy metal ions polluted wastewater.


Sign in / Sign up

Export Citation Format

Share Document