scholarly journals Alleviation of Cadmium Phytotoxicity Using Silicon Fertilization in Wheat by Altering Antioxidant Metabolism and Osmotic Adjustment

2021 ◽  
Vol 13 (20) ◽  
pp. 11317
Author(s):  
Abdihakim Osman Heile ◽  
Qamar uz Zaman ◽  
Zubair Aslam ◽  
Afzal Hussain ◽  
Mustansar Aslam ◽  
...  

Humans are facing very serious health threats from food contamination with cadmium (Cd), and Cd uptake by wheat is amongst the main causes of Cd entrance into the food chain. The current study examined the effect of foliar application (0, 1.50, 3.00 and 4.00 mM) of various silicate chemicals (calcium silicate and potassium silicate) on wheat growth and Cd addition by wheat under Cd stress 20 mg kg−1 of soil using CdCl2. The results revealed that under control conditions, the application of Si improved all the growth, physiological, biochemical and quality attributes by reducing malondialdehyde contents and electrolyte leakage. Under Cd stress, the supplementation of Si conferred a better growth rate, gaseous exchange for metabolic activity and maintained the tissues’ turgor and membranes’ stabilities compared to those obtained under control (without Si). The enzymatic activities (superoxide dismutase, peroxidase and catalase) also show rapid action by the application of Si supplement, which were associated with elevated osmoprotectant contents and antioxidants, having role in antioxidant defense against Cd stress. These results suggested that a 4.50 mM concentration of Si supplement (potassium silicate) works effectively against Cd stress. The given results showed that Si supplement is beneficial for the enhancement of many metabolic activities that takes places in plants during the growth period that proved a feasible approach in controlling the Cd concentration within wheat plants and, ultimately, in humans.

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2440
Author(s):  
Qamar uz Zaman ◽  
Muhammad Rashid ◽  
Rab Nawaz ◽  
Afzal Hussain ◽  
Kamran Ashraf ◽  
...  

Soil contamination with toxic cadmium (Cd) is becoming a serious global problem and poses a key hazard to environments and the health of human beings worldwide. The present study investigated the effects of foliar applications of three forms of silicate chemicals (calcium silicate, sodium silicate, and potassium silicate) at four rates (0.25%, 0.5%, 0.75%, and 1.0%) at tillering stage on rice growth and the accumulation of Cd under Cd stress (30 mg kg−1). The results showed that Cd stress reduced the yield-related traits and enlarged Cd contents in different rice organs. The leaf gas exchange attributes and yield traits were enhanced, and the Cd accumulation and bioaccumulation factor in rice organs were reduced, especially in grains, through silicon application. In shoots, roots, and grains, foliar spray of Si reduced Cd contents by 40.3%, 50.7%, and 47.9%, respectively. The effectiveness of silicate compounds in reducing Cd toxicity varied with the kind of chemicals and doses of foliar applications. Foliar application of potassium silicate, at a rate of 0.5%, at tillering stage, showed the best effectiveness in improving grain yield, while mitigating Cd accumulation in rice grains. The outcome of this study provides a promising practicable approach in alleviating Cd toxicity in rice and preventing the entrance of Cd into the food chain.


2018 ◽  
Vol 19 (8) ◽  
pp. 2163 ◽  
Author(s):  
Marwa Ismael ◽  
Ali Elyamine ◽  
Yuan Zhao ◽  
Mohamed Moussa ◽  
Muhammad Rana ◽  
...  

Cadmium (Cd) is highly toxic, even at very low concentrations, to both animals and plants. Pollen is extremely sensitive to heavy metal pollutants; however, less attention has been paid to the protection of this vital part under heavy metal stress. A pot experiment was designed to investigate the effect of foliar application of Se (1 mg/L) and Mo (0.3 mg/L) either alone or in combination on their absorption, translocation, and their impact on Cd uptake and its further distribution in Brassica napus, as well as the impact of these fertilizers on the pollen grains morphology, viability, and germination rate in B. napus under Cd stress. Foliar application of either Se or Mo could counteract Cd toxicity and increase the plant biomass, while combined application of Se and Mo solutions on B. napus has no significant promotional effect on plant root and stem, but reduces the seeds’ weight by 10–11%. Se and Mo have decreased the accumulated Cd in seeds by 6.8% and 9.7%, respectively. Microscopic studies, SEM, and pollen viability tests demonstrated that pollen grains could be negatively affected by Cd, thus disturbing the plant fertility. Se and Mo foliar application could reduce the toxic symptoms in pollen grains when the one or the other was sprayed alone on plants. In an in vitro pollen germination test, 500 μM Cd stress could strongly inhibit the pollen germination rate to less than 2.5%, however, when Se (10 μM) or Mo (1.0 μM) was added to the germination medium, the rate increased, reaching 66.2% and 39.4%, respectively. At the molecular level, Se and Mo could greatly affect the expression levels of some genes related to Cd uptake by roots (IRT1), Cd transport (HMA2 and HMA4), Cd sequestration in plant vacuoles (HMA3), and the final Cd distribution in plant tissue at the physiological level (PCS1).


Author(s):  
V. Arthi ◽  
M. V. Sriramachandrasekharan ◽  
R. Manivannan ◽  
Arumugam Shakila

Aims: Banana is the fifth largest agricultural commodity in the world trade after cereals, sugar, coffee and cocoa and second largest fruit crop in the world. The main objective of the study is to know the performance of banana to silicon fertilization grown in typic ustifluvent soil. Study Design: The experiment was conducted in randomized block design. The test crop banana var Grand Naine. Place and Duration of Study: Rajagopalapuram village under Kuttallam taluk, Tamilnadu, India Between July to October 2016 Methodology: The experiment consisted of ten treatments viz., T1-NPK (RDF), T2-NPK+Potassium silicate (FS)- 0.25%,T3-NPK+Potassium silicate (FS)-0.50%,T4-NPK+Potassium silicate (FS)-1.00%,T5-NPK+Potassium silicate (FS)-0.25%,T6 -NPK+ Potassium silicate (FS)-0.50%,T7­-NPK+ Potassium silicate (FS)-1.00%,T8-NPK+Potassium silicate (SA)-50kgha-1,T9-NPK + Potassium silicate (SA)-100 kg ha-1 and T10 -NPK + Potassium silicate (SA)-150 kg ha-1. T2 to T4 foliar spray was done at 3rd and 5th month and from T5 toT7, foliar spray was done at 3rd, 5th and 7th month. Growth, yield parameters and banana yield were recorded. Results: The outcome was that soil application of silicon recorded higher growth and yield compared to foliar application. Pseudo stem height, Pseudo stem girth, LAI, chlorophyll content, sucker production and leaf dry matter weight, fruit characters viz., bunch weight and length, number of hands/ bunches, number of fingers / hands, total number of fingers/ bunches, finger weight, length and girth were highest with soil application of 50 kg Si ha-1. Similarly, foliar application of silicon at 1% applied at 3rd and 5th recorded the highest morphological and fruit characters compared to 0.25 and 0.5% Si. The highest fruit yield ((96.0 t ha-1) was noticed with 50 kg Si ha-1 followed by foliar spray of 1% Si applied at 3rd and 5th month (92.7 t ha-1). Conclusion: It is concluded that soil application of 50 kg Si ha-1 through potassium silicate is best followed by foliar spray of 1.0% Si for realizing higher banana productivity.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 182
Author(s):  
Ruchi Bansal ◽  
Swati Priya ◽  
Harsh Kumar Dikshit ◽  
Sherry Rachel Jacob ◽  
Mahesh Rao ◽  
...  

Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil (Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 μM and 200 μM) of cadmium chloride (CdCl2). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2O2) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions (p < 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g−1 fresh weight) compared to L4717 (7.32 mg g−1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Gomaa ◽  
Essam E. Kandil ◽  
Atef A. M. Zen El-Dein ◽  
Mamdouh E. M. Abou-Donia ◽  
Hayssam M. Ali ◽  
...  

AbstractIn Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ertan Yildirim ◽  
Melek Ekinci ◽  
Metin Turan ◽  
Güleray Ağar ◽  
Atilla Dursun ◽  
...  

AbstractCadmium (Cd) is a toxic and very mobile heavy metal that can be adsorbed and uptaken by plants in large quantities without any visible sign. Therefore, stabilization of Cd before uptake is crucial to the conservation of biodiversity and food safety. Owing to the high number of carboxyl and phenolic hydroxyl groups in their structure, humic substances form strong bonds with heavy metals which makes them perfect stabilizing agents. The aim of this study was to determine the effects of humic and fulvic acid (HA + FA) levels (0, 3500, 5250, and 7000 mg/L) on alleviation of Cadmium (Cd) toxicity in garden cress (Lepidium sativum) contaminated with Cd (CdSO4.8H2O) (0, 100, and 200 Cd mg/kg) under greenhouse conditions. Our results showed that, Cd stress had a negative effect on the growth of garden cress, decreased leaf fresh, leaf dry, root fresh and root dry weights, leaf relative water content (LRWC), and mineral content except for Cd, and increased the membrane permeability (MP) and enzyme (CAT, SOD and POD) activity. However, the HA + FA applications decreased the adverse effects of the Cd pollution. At 200 mg/kg Cd pollution, HA + FA application at a concentration of 7000 mg/L increased the leaf fresh, leaf dry, root fresh, root dry weights, stem diameter, leaf area, chlorophyll reading value (CRV), MP, and LRWC values by 262%, 137%, 550%,133%, 92%, 104%, 34%, 537%, and 32% respectively, compared to the control. Although the highest H2O2, MDA, proline and sucrose values were obtained at 200 mg/L Cd pollution, HA + FA application at a concentration of 7000 mg/L successfully alleviated the deleterious effects of Cd stress by decreasing H2O2, MDA, proline, and sucrose values by 66%, 68%, 70%, and 56%, respectively at 200 mg/kg Cd pollution level. HA + FA application at a concentration of 7000 mg/L successfully mitigated the negative impacts of Cd pollution by enhanced N, P, K, Ca, Mg, Fe, Mn, Cu, Mn, Zn, and B by 75%, 23%, 84%, 87%, 40%, 85%, 143%, 1%, 65%, and 115%, respectively. In addition, HA + FA application at a concentration of 7000 mg/L successfully reduced Cd uptake by 95% and Cl uptake by 80%. Considering the plant growth parameters, the best results were determined when HA + FA concentration was 7000 mg/L. We have shown that, it is critical to apply a humic substance with high percentage of FA, which was 10% in this study, to mitigate the adverse effects of heavy metal stress on plant growth. In conclusion, the application of HA + FA may be suggested as an effective solution for reducing the Cd uptake of the plants by stabilizing Cd in soil and preventing translocation of Cd from the roots of plant to its shoot and leaves.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 420 ◽  
Author(s):  
Shashidhar K. Shankarappa ◽  
Samuel J. Muniyandi ◽  
Ajay B. Chandrashekar ◽  
Amit K. Singh ◽  
Premaradhya Nagabhushanaradhya ◽  
...  

Lentil (Lens culinaris) is an important winter season annual legume crop known for its highly valued seed in human and animal nutrition owing to its high lysine and tryptophan content. Shortage of water during the crop growth period has become the major impediment for cultivation of pulses in rice fallow in particular. Under such conditions, the application of hydrogel can be a potential alternative to improve photosynthetic efficiency, assimilate partitioning, and increase growth and yield. A field experiment was conducted from November to February during 2015–16 to 2017–18 on clay loam soil that was medium in fertility and acidic in reaction (pH 5.4) at Central Agricultural University, Imphal, Manipur. The experiment was laid out in split plot design with three replications. There were three hydrogel levels in total in the main plot and foliar nutrition with five different nutrient sprays in sub-plots, together comprising 15 treatment combinations. The data pooled over three years, 2015–2018, revealed that application of hydrogel at 5 kg/ha before sowing recorded a significantly greater number of pods per plant (38.0) and seed yield (1032.1 kg/ha) over the control. Foliar application of nutrients over flower initiation and pod development had a positive effect on increasing the number of pods per plant eventually enhanced the seed yield of lentil. Foliar application of either 0.5% NPK or salicylic acid 75 ppm spray at flower initiation and pod development stages recorded significantly more pods per plant over other nutrient treatments. Further, the yield attributed improved because of elevated growth in plant. Significantly maximum seed yield (956 kg/ha) recorded in the NPK spray of 0.5% remained on par with salicylic acid 75 ppm (939 kg/ha) over the rest of the treatments.


2013 ◽  
Vol 38 (6) ◽  
pp. 547-551 ◽  
Author(s):  
Ueder Pedro Lopes ◽  
Laércio Zambolim ◽  
Pedro Nery Souza Neto ◽  
Antônio Fernando Souza ◽  
Alexandre Sandri Capucho ◽  
...  

2021 ◽  
Vol 117 (3) ◽  
pp. 1
Author(s):  
Fadl Abdelhamid HASHEM ◽  
Rasha M. EL-MORSHEDY ◽  
Tarek M. YOUNIS ◽  
Mohamed A. A. ABDRABBO

<p>Temperature rise is one of the most challenging climate change impacts that increase the intensity of heat stress. In this investigated the production of celery (<em>Apium graveolens</em> var. <em>rapaceum </em>F1 hybrid)) was tested during the late season. The experiment was carried out during the two successive summer seasons of 2019 and 2020 in Giza Governorate, Egypt. The experimental design is a split-plot, the main plots consist of three low tunnel cover treatments, and three spray treatments with three replicates in sub-main plots. Results showed that the use of white net cover gave the highest vegetative growth and yield followed by the black net. Values of plant yield were 951, 765, and 660 g/plant for white, black and without cover, respectively, in the first season. The foliar application of 3 mM of potassium silicate produced the highest vegetative growth and yield compared to the control treatment. Referring to the effect of spray foliar application of potassium silicate on yield 1.5 mM (S1), 3 mM (S2), and control were 892, 795, and 689 g/plant in the first season, respectively. The best combination that delivered the highest vegetative growth and yield was a cover low tunnel with a white net combined with S2 foliar application.</p>


Development ◽  
1971 ◽  
Vol 26 (2) ◽  
pp. 285-293
Author(s):  
R. V. Shah ◽  
P. K. Hiradhar ◽  
D. K. Magon

The concentration of ascorbic acid (AA) and the histochemical distribution of the vitamin in the normal and regenerating tail of the gekkonid lizard, Hemidactylus flaviviridis, have been investigated. In the regenerating tail of the lizard the AA concentration almost doubles during wound healing and becomes fivefold during differentiation. However, it falls almost to the normal level during the blastema phase (i.e. period between wound healing and differentiation). Again, during the growth period (i.e. after differentiation) the AA concentration gradually becomes reduced, reaching the normal mark as the regenerate regains the full length of the original tail. Nevertheless, the vitamin level does not fall below the normal mark at any stage of regeneration. Increase of ascorbic acid during wound healing is thought to be mainly due to increased demand for the vitamin at the broken ends of the stump tissues, for their repair and formation of wound epithelium; the vitamin is known to help these processes. A fivefold increase of the vitamin during the differentiation period corresponds to an increased pace of laying down of the matrix material for the connective tissues, suggesting the role of ascorbic acid in the formation of collagen and mucopolysaccharides. Besides, the role of ascorbic acid in lipid and carbohydrate metabolism is also important during tail regeneration. Fluctuations in the vitamin level during different phases of tail regeneration are correlated with various states of metabolic activities of the corresponding phases.


Sign in / Sign up

Export Citation Format

Share Document