scholarly journals Formation of Palygorskite Clay from Treated Diatomite and its Application for the Removal of Heavy Metals from Aqueous Solution

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1257 ◽  
Author(s):  
Houwaida Nefzi ◽  
Manef Abderrabba ◽  
Sameh Ayadi ◽  
Jalel Labidi

Environmental contamination by toxic heavy metals is a serious worldwide phenomenon. Thus, their removal is a crucial issue. In this study, we found an efficient adsorbent to remove Cu2+ and Ni2+ from aqueous solution using two materials. Chemical modification was used to obtain palygorskite clay from diatomite. The adsorbents were characterized using X-ray florescence, Fourier transform infrared spectroscopy and X-ray diffraction. The effects of contact time, initial concentration, temperature and pH on the adsorption process were investigated. Our results showed that the (%) of maximum adsorption capacity of diatomite was 78.44% for Cu2+ at pH 4 and 77.3% for Ni2+ at pH 7, while the (%) of the maximum adsorption on palygorskite reached 91% for Cu2+ and 87.05% for Ni2+, in the same condition. The results indicate that the pseudo-second-order model can describe the adsorption process. Furthermore, the adsorption isotherms could be adopted by the Langmuir and the Freundlich models with good correlation coefficient (R2). Thus, our results showed that palygorskite prepared from Tunisian diatomite is a good adsorbent for the removal of heavy metals from water.

2013 ◽  
Vol 789 ◽  
pp. 176-179 ◽  
Author(s):  
Eny Kusrini ◽  
Nofrijon Sofyan ◽  
Dwi Marta Nurjaya ◽  
Santoso Santoso ◽  
Dewi Tristantini

Hydroxyapatite/chitosan (HApC) composite has been prepared by precipitation method and used for removal of heavy metals (Cr6+, Zn2+and Cd2+) from aqueous solution. The HAp and 3H7C composite with HAp:chitosan ratio of 3:7 (wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy-energy dispersive X-ray spectroscopy. The SEM results showed that HAp is spherical-shaped and crystalline, while chitosan has a flat structure. SEM micrograph of 3H7C composite reveals crystalline of HAp uniformly spread over the surface of chitosan. The crystal structure of HAp is maintained in 3H7C composite. Chitosan affects the adsorption capacity of HAp for heavy metal ions; it binds the metal ions as well as HAp. The kinetic data was best described by the pseudo-second order. Surface adsorption and intraparticle diffusion take place in the mechanism of adsorption process. The binding of HAp powder with chitosan made the capability of composite to removal of Cr6+, Zn2+and Cd2+from aqueous solution effective. The order of removal efficiency (Cr6+> Cd2+> Zn2+) was observed.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
America R. Vazquez-Olmos ◽  
Mohamed Abatal ◽  
Roberto Y. Sato-Berru ◽  
G. K. Pedraza-Basulto ◽  
Valentin Garcia-Vazquez ◽  
...  

Adsorption of Pb(II) from aqueous solution using MFe2O4 nanoferrites (M = Co, Ni, and Zn) was studied. Nanoferrite samples were prepared via the mechanochemical method and were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), micro-Raman, and vibrating sample magnetometry (VSM). XRD analysis confirms the formation of pure single phases of cubic ferrites with average crystallite sizes of 23.8, 19.4, and 19.2 nm for CoFe2O4, NiFe2O4, and ZnFe2O4, respectively. Only NiFe2O4 and ZnFe2O4 samples show superparamagnetic behavior at room temperature, whereas CoFe2O4 is ferromagnetic. Kinetics and isotherm adsorption studies for adsorption of Pb(II) were carried out. A pseudo-second-order kinetic describes the sorption behavior. The experimental data of the isotherms were well fitted to the Langmuir isotherm model. The maximum adsorption capacity of Pb(II) on the nanoferrites was found to be 20.58, 17.76, and 9.34 mg·g−1 for M = Co, Ni, and Zn, respectively.


2017 ◽  
Vol 55 (1) ◽  
pp. 54
Author(s):  
Le Cao The ◽  
Vu Minh Tan ◽  
Phan Thi Binh

Composite based on eucalyptus leaf and polyaniline (EL-PANi) was prepared by chemical polymerization method. It showed that the function groups belonging to polyaniline and eucalyptus leaf were found through IR analysis and the nanostructure of composite was explained by SEM images. The adsorption of  Pb2+ was carried out onto composite in aqueous solution via varying pH, contact time, and its initial concentration. The experimental adsorption data fitted well into Freundlich adsorption isotherm model (r2 = 0.9873). The adsorption process followed pseudo-second order kinetic with r2 = 0.9995. The maximum adsorption capacity of Pb2+ onto that composite was 172.4138 mg/g  by Langmuir equation and KF was 58.7527 mg/g by Freundlich one.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 4430-4453
Author(s):  
Wenqi Li ◽  
Liping Zhang ◽  
Ying Guan ◽  
Zhihan Tong ◽  
Xiang Chen ◽  
...  

Biochar derived from Tetrapanax papyriferum petioles at different pyrolysis temperatures was used to remove copper from aqueous solution. Abundant porous structures were observed with scanning electron microscopy, and transmission electron microscope images revealed a unique layered nanopore structure. A high pyrolytic temperature resulted in a biochar with a higher surface area, ash content, and mineral element content. The maximum adsorption capacity of T. papyriferum petiole biochar (TBC) was 182 mg/g. The Langmuir adsorption isotherm model and pseudo-second-order kinetics model were most suitable for describing the adsorption process, indicating that adsorption takes place at specific homogeneous sites within the adsorbent. The calculated ΔH° values indicated that the adsorption process was endothermic. The adsorption mechanism for TBC was attributed to precipitation, ion exchange, C-π interactions, and complexation. Thus, the biochar used in this study is a promising environmentally friendly and effective adsorbent for removing Cu2+ ions from an aqueous solution.


2022 ◽  
Author(s):  
Chuqing Yao ◽  
Yaodong Dai ◽  
Shuquan Chang ◽  
Haiqian Zhang

Abstract In this work, novel Prussian blue tetragonal nanorods were prepared by template-free solvothermal methods for removal of radionuclide Cs and Sr. It was worth that Prussian blue nanorods exhibited the better adsorption performance than co-precipitation PB or Prussian blue analogue composites. Thermodynamic analysis implied that adsorption process was spontaneous and endothermic which was described well with Langmuir isotherm and pseudo-second-order equation, the maximum adsorption capacity of PB nanorod was estimated to be 194.26 mg g-1 and 256.62 mg g-1 for Cs+ and Sr2+. The adsorption mechanism of Cs+ and Sr2+ was studied by X-ray photoelectron spectroscopy, X-ray diffraction and 57Fe Mössbaure spectroscopy, the results revealed that Cs+ entered in PB crystal to generate a new phase, the most of Sr2+ was trapped in internal crystal and the other exchanged Fe2+. Furthermore, the effect of co-existing ions and pH for PB adsorption process were also investigated. The results suggest that PB nanorods were outstanding candidate for removal of Cs+ and Sr2+ from radioactive wastewater.


2021 ◽  
pp. 1-12
Author(s):  
Raafia Najam ◽  
Syed Muzaffar Ali Andrabi

Sawdust of willow has been investigated as an adsorbent for the removal of Ni(II), and Cd(II) ions from aqueous solution. Since willow tree is widely grown in almost all parts of Kashmir, it can be a common most easily available, sustainable, low cost adsorbent for the treatment of wastewaters in this part of the world where growing industrialization is affecting water quality like elsewhere in the world. Therefore, it is worthwhile to investigate the potential of sawdust of willow tree as an adsorbent for the removal of Ni(II) and Cd(II) ions from aqueous solution as a first step. Batch experiments were conducted to study the effect of some parameters such as contact time, initial concentration of metal ions, solution pH and temperature. Langmuir and Freundlich models were employed for the mechanistic analysis of experimental data obtained. Results reveal that in our system adsorption follows the Langmuir isotherm. The maximum adsorption capacity of Ni(II) and Cd(II) were found to be 7.98 and 7.11 mg/g respectively at optimum conditions. The pseudo-first-order and pseudo-second-order models were employed for kinetic analysis of adsorption process. The adsorption process follows pseudo-second-order kinetics. The efficacy of the adsorbent in the treatment of effluent from fertilizer factory has been investigated and the results have been found encouraging.


2020 ◽  
Author(s):  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Risfidian Mohadi ◽  
Addy Rachmat ◽  
Aldes Lesbani

Abstract In this work, CuAl/Biochar (BC) composite was prepared by the coprecipitation method. The materials were applied to remove malachite green in aqueous solution. These materials were characterized using XRD, FTIR, BET and SEM-EDX analyses. The composite material was confirmed by X-ray diffractograms with reflection (002) at 24o and the appearance of new peaks at 1095 cm -1 . The BET result of CuAl/BC composite has larger surface area is 168 m 2 /g than 46 m 2 /g for LDH. The morphologies of composite materials show agglomeration and micro particle size. The result of the adsorption study indicated the composite material follows pseudo-second-order (PSO) and Langmuir isotherm models. The maximum adsorption capacity of malachite green using CuAl/BC uptake is 164.316 mg/g. The thermodynamic analysis indicates that the malachite green adsorption is spontaneous, endothermic. Regeneration study of adsorbent CuAl/BC composite shows after four times reused, it still has high removal efficiency at 89%.


Sign in / Sign up

Export Citation Format

Share Document