scholarly journals Comparative Study on Violent Sloshing with Water Jet Flows by Using the ISPH Method

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2590 ◽  
Author(s):  
Hua Jiang ◽  
Yi You ◽  
Zhenhong Hu ◽  
Xing Zheng ◽  
Qingwei Ma

The smoothed particle hydrodynamics (SPH) method has been playing a more and more important role in violent flow simulations since it is easy to deal with the large deformation and breaking flows from its Lagrangian particle characteristics. In this paper, the incompressible SPH (ISPH) method was used to simulate the liquid sloshing in a 2D tank with water jet flows. The study compares the liquid sloshing under different water jet conditions to analyze the effects of the excitation frequency and the water jet on impact pressure. The results demonstrate that the water jet flows can significantly affect the impact pressures on the wall caused by violent sloshing. The main purpose of the paper is to test the ISPH ability for this study and some useful regulars that are obtained from different numerical cases and study the effect of their practical importance.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2314 ◽  
Author(s):  
Shu Wang ◽  
Anping Shu ◽  
Matteo Rubinato ◽  
Mengyao Wang ◽  
Jiping Qin

Non-homogeneous viscous debris flows are characterized by high density, impact force and destructiveness, and the complexity of the materials they are made of. This has always made these flows challenging to simulate numerically, and to reproduce experimentally debris flow processes. In this study, the formation-movement process of non-homogeneous debris flow under three different soil configurations was simulated numerically by modifying the formulation of collision, friction, and yield stresses for the existing Smoothed Particle Hydrodynamics (SPH) method. The results obtained by applying this modification to the SPH model clearly demonstrated that the configuration where fine and coarse particles are fully mixed, with no specific layering, produces more fluctuations and instability of the debris flow. The kinetic and potential energies of the fluctuating particles calculated for each scenario have been shown to be affected by the water content by focusing on small local areas. Therefore, this study provides a better understanding and new insights regarding intermittent debris flows, and explains the impact of the water content on their formation and movement processes.


Author(s):  
Alexander L. Brown

Transportation accidents and the subsequent fire present a concern. Particularly energetic accidents like an aircraft impact or a high speed highway accident can be quite violent. We would like to develop and maintain a capability at Sandia National Laboratories to model these very challenging events. We have identified Smoothed Particle Hydrodynamics (SPH) as a good method to employ for the impact dynamics of the fluid for severe impacts. SPH is capable of modeling viscous and inertial effects for these impacts for short times. We have also identified our fire code Lagrangian/Eulerian (L/E) particle capability as an adequate method for fuel transport and spray modeling. A fire code can also model the subsequent fire for a fuel impact. Surface deposition of the liquid may also be acceptably predicted with the same code. These two methods (SPH and L/E) typically employ complimentary length and timescales for the calculation, and are potentially suited for coupling given adequate attention to relevant details. Length and timescale interactions are important considerations when joining the two capabilities. Additionally, there are physical model inadequacy considerations that contribute to the accuracy of the methodology. These models and methods are presented and evaluated. Some of these concerns are detailed for a verification type scenario used to show the work in progress of this coupling capability. The importance of validation methods and their appropriate application to the genesis of this class of predictive tool are also discussed.


Author(s):  
M. Ganser ◽  
B. van der Linden ◽  
C. G. Giannopapa

Hypervelocity impacts occur in outer space where debris and micrometeorites with a velocity of 2 km/s endanger spacecraft and satellites. A proper shield design, e.g. a laminated structure, is necessary to increase the protection capabilities. High velocities result in massive damages. The resulting large deformations can hardly be tackled with mesh based discretization methods. Smoothed Particle Hydrodynamics (SPH), a Lagrangian meshless scheme, can resolve large topological changes whereas it still follows the continuous formulation. Derived by variational principles, SPH is able to capture large density fluctuations associated with hypervelocity impacts correctly. Although the impact region is locally limited, a much bigger domain has to be discretized because of strong outgoing pressure waves. A truncation of the computational domain is preferable to save computational power, but this leads to artificial reflections which influence the real physics. In this paper, hypervelocity impact (HVI) is modelled by means of basic conservation assumptions leading to the Euler equations of fluid dynamics accompanied by the Mie-Grueneisen equation of state. The newly developed simulation tool SPHlab presented in this work utilizes the discretization method smoothed particle hydrodynamics (SPH) to capture large deformations. The model is validated through a number of test cases. Different approaches are presented for non-reflecting boundaries in order to tackle artificial reflections on a computational truncated domain. To simulate an HVI, the leading continuous equations are derived and the simulation tool SPHlab is developed. The method of characteristics allows to define proper boundary fluxes by removing the inwards travelling information. One- and two-dimensional model problems are examined which show excellent absorption behaviour. An hypervelocity impact into a laminated shield is simulated and analysed and a simple damage model is introduced to model a spallation failure mode.


2022 ◽  
Author(s):  
Binghui Cui ◽  
Liaojun Zhang

Abstract Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities, long jump distances, and poor predictability. Simulation of it facilitates propagation analysis and provides solutions for risk assessment and mitigation design. The smoothed particle hydrodynamics (SPH) method has been successfully applied to the simulation of two-dimensional (2D) and three-dimensional (3D) flow-like landslides. However, the influence of boundary resistance on the whole process of landslide failure is rarely discussed. In this study, a boundary algorithm considering the friction is proposed, and integrated into the boundary condition of the SPH method, and its accuracy is verified. Moreover, the Navier-Stokes equation combined with the non-Newtonian fluid rheology model was utilized to solve the dynamic behavior of the flow-like landslide. To verify its performance, the Shuicheng landslide event, which occurred in Guizhou, China, was taken as a case study. In the 2D simulation, a sensitivity analysis was conducted, and the results showed that the shearing strength parameters have more influence on the computation accuracy in comparison with the coefficient of viscosity. Afterwards, the dynamic characteristics of the landslide, such as the velocity and the impact area, were analyzed in the 3D simulation. The simulation results are in good agreement with the field investigations. The simulation results demonstrate that the SPH method performs well in reproducing the landslide process, and facilitates the analysis of landslide characteristics as well as the affected areas, which provides a scientific basis for conducting the risk assessment and disaster mitigation design.


2020 ◽  
Vol 25 (2) ◽  
pp. 22 ◽  
Author(s):  
Milan Toma ◽  
Rosalyn Chan-Akeley ◽  
Christopher Lipari ◽  
Sheng-Han Kuo

Primary Objective: The interaction of cerebrospinal fluid with the brain parenchyma in an impact scenario is studied. Research Design: A computational fluid-structure interaction model is used to simulate the interaction of cerebrospinal fluid with a comprehensive brain model. Methods and Procedures: The method of smoothed particle hydrodynamics is used to simulate the fluid flow, induced by the impact, simultaneously with finite element analysis to solve the large deformations in the brain model. Main Outcomes and Results: Mechanism of injury resulting in concussion is demonstrated. The locations with the highest stress values on the brain parenchyma are shown. Conclusions: Our simulations found that the damage to the brain resulting from the contrecoup injury is more severe than that resulting from the coup injury. Additionally, we show that the contrecoup injury does not always appear on the side opposite from where impact occurs.


2013 ◽  
Vol 353-356 ◽  
pp. 3531-3536
Author(s):  
Kun Zheng ◽  
Zhao Chen Sun ◽  
Chang Ping Chen ◽  
Feng Zhou

The numerical wave flume was established for simulating the impact effects of regular waves on horizontal plate by adopting the method of Smoothed Particle Hydrodynamics (SPH).The impact process of regular waves on horizontal plate was analyzed, and the impact pressure-time curves were gotten using a new estimation method. The comparison of numerical results and experimental results shows that the new estimation method can predict the peak impact pressure more accurately.


Author(s):  
Xiangwei Dong ◽  
Zengliang Li ◽  
Qi Zhang ◽  
Wei Zeng ◽  
G.R. Liu

The free rotation of an angular particle during its impact on ductile surfaces is an important factor that influences the erosion mechanism. However, the phenomenon cannot be easily revealed experimentally because the incident conditions cannot be accurately controlled. In this study, a novel erosion model based on smoothed particle hydrodynamics method is proposed to simulate single and multiple impacts of particles with specified angularities on a ductile surface. The model can simulate a particle having free rotation during the impact process and initial rotation prior to the impact. The results show that the impact angle and initial orientation significantly affect the tumbling behavior, which determines the erosion mechanism. Moreover, the initial rotation is investigated by assigning an initial angular velocity to the particle at the onset of impact. The proposed smoothed particle hydrodynamics erosion model is proven to be a promising complementary method that supports experimental techniques. This study provides insight for understanding the fundamental mechanisms of surface erosion due to angular particles.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Darcy Q. Hou ◽  
Arris S. Tijsseling ◽  
Zafer Bozkus

The impact force on an elbow induced by traveling isolated liquid slugs in a horizontal pipeline is studied. A literature review reveals that the force on the elbow is mainly due to momentum transfer in changing the fluid flow direction around the elbow. Therefore, to accurately calculate the magnitude and duration of the impact force, the slug arrival velocity at the elbow needs to be well predicted. The hydrodynamic behavior of the slug passing through the elbow needs to be properly modeled too. A combination of 1D and 2D models is used in this paper to analyze this problem. The 1D model is used to predict the slug motion in the horizontal pipeline. With the obtained slug arrival velocity, slug length, and driving air pressure as initial conditions, the 2D Euler equations are solved by the smoothed particle hydrodynamics (SPH) method to analyze the slug dynamics at the elbow. The 2D SPH solution matches experimental data and clearly demonstrates the occurrence of flow separation at the elbow, which is a typical effect of high Reynolds flows. Using the obtained flow contraction coefficient, an improved 1D model with nonlinear elbow resistance is proposed and solved by SPH. The 1D SPH results show the best fit with experimental data obtained so far.


Author(s):  
Murray Rudman ◽  
Paul Cleary ◽  
Justin Leontini ◽  
Matthew Sinnott ◽  
Mahesh Prakash

Full three-dimensional simulation of the impact of a rogue wave on a semi-submersible platform is undertaken using the Smoothed Particle Hydrodynamics (SPH) technique. Two different mooring configurations are considered: A Tension Leg Platform (TLP) system and a Taut Spread Mooring (TSM) system. It is seen that for a wave impact normal to the platform side, the heave and surge responses of the platform are significantly different for the two mooring systems. The TLP system undergoes large surge but comparatively smaller heave motions than the TSM system. The degree of pitch is very similar. The total tension in the mooring cables is approximately four times higher in the TSM system and exceeds the strength of the cables used in the simulation. SPH is seen to be an attractive alternative to standard methods for simulating the coupled interaction of highly non-linear breaking waves and structural motion.


Author(s):  
Jian Zhang ◽  
Zhe Lu ◽  
Sugrim Sagar ◽  
Hyunhee Choi ◽  
Heesung Park ◽  
...  

Abstract In this work, the impact behavior of an alumina spherical particle on alumina coating is modeled using the smoothed particle hydrodynamics (SPH) method. The effects of impact angle (0°, 30°, and 60°) and velocity (100 m/s, 200 m/s, and 300 m/s) on the morphology changes of the impact pit and impacting particle, and their associated stress and energy are investigated. The results show that the combination of impact angle of 0° and velocity of 300 m/s produces the highest penetration depth and largest stress and deformation in the coating layer, while the combination of 100 m/s & 60° causes the minimum damage to the coating layer. This is because the penetration depth is determined by the vertical velocity component difference between the impacting particle and the coating layer, but irrelevant to the horizontal component. The total energy of the coating layer increases with the time, while the internal energy increases with the time after some peak values, which is due to energy transmission from the spherical particle to the coating layer and the stress shock waves. The energy transmission from impacting particle to coating layer increases with the increasing particle velocity, and decreases with the increasing inclined angle. The simulated impact pit morphology is qualitatively similar to the experimental observation. This work demonstrates that the SPH method is useful to analyze the impact behavior of ceramic coatings.


Sign in / Sign up

Export Citation Format

Share Document