scholarly journals Prediction of Chlorophyll-a Concentrations in the Nakdong River Using Machine Learning Methods

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1822
Author(s):  
Yuna Shin ◽  
Taekgeun Kim ◽  
Seoksu Hong ◽  
Seulbi Lee ◽  
EunJi Lee ◽  
...  

Many studies have attempted to predict chlorophyll-a concentrations using multiple regression models and validating them with a hold-out technique. In this study commonly used machine learning models, such as Support Vector Regression, Bagging, Random Forest, Extreme Gradient Boosting (XGBoost), Recurrent Neural Network (RNN), and Long–Short-Term Memory (LSTM), are used to build a new model to predict chlorophyll-a concentrations in the Nakdong River, Korea. We employed 1–step ahead recursive prediction to reflect the characteristics of the time series data. In order to increase the prediction accuracy, the model construction was based on forward variable selection. The fitted models were validated by means of cumulative learning and rolling window learning, as opposed to the hold–out technique. The best results were obtained when the chlorophyll-a concentration was predicted by combining the RNN model with the rolling window learning method. The results suggest that the selection of explanatory variables and 1–step ahead recursive prediction in the machine learning model are important processes for improving its prediction performance.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arturo Moncada-Torres ◽  
Marissa C. van Maaren ◽  
Mathijs P. Hendriks ◽  
Sabine Siesling ◽  
Gijs Geleijnse

AbstractCox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, several machine learning (ML) techniques have been adapted for this task. Although they have shown to yield results at least as good as classical methods, they are often disregarded because of their lack of transparency and little to no explainability, which are key for their adoption in clinical settings. In this paper, we used data from the Netherlands Cancer Registry of 36,658 non-metastatic breast cancer patients to compare the performance of CPH with ML techniques (Random Survival Forests, Survival Support Vector Machines, and Extreme Gradient Boosting [XGB]) in predicting survival using the $$c$$ c -index. We demonstrated that in our dataset, ML-based models can perform at least as good as the classical CPH regression ($$c$$ c -index $$\sim \,0.63$$ ∼ 0.63 ), and in the case of XGB even better ($$c$$ c -index $$\sim 0.73$$ ∼ 0.73 ). Furthermore, we used Shapley Additive Explanation (SHAP) values to explain the models’ predictions. We concluded that the difference in performance can be attributed to XGB’s ability to model nonlinearities and complex interactions. We also investigated the impact of specific features on the models’ predictions as well as their corresponding insights. Lastly, we showed that explainable ML can generate explicit knowledge of how models make their predictions, which is crucial in increasing the trust and adoption of innovative ML techniques in oncology and healthcare overall.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


2022 ◽  
Vol 14 (1) ◽  
pp. 229
Author(s):  
Jiarui Shi ◽  
Qian Shen ◽  
Yue Yao ◽  
Junsheng Li ◽  
Fu Chen ◽  
...  

Chlorophyll-a concentrations in water bodies are one of the most important environmental evaluation indicators in monitoring the water environment. Small water bodies include headwater streams, springs, ditches, flushes, small lakes, and ponds, which represent important freshwater resources. However, the relatively narrow and fragmented nature of small water bodies makes it difficult to monitor chlorophyll-a via medium-resolution remote sensing. In the present study, we first fused Gaofen-6 (a new Chinese satellite) images to obtain 2 m resolution images with 8 bands, which was approved as a good data source for Chlorophyll-a monitoring in small water bodies as Sentinel-2. Further, we compared five semi-empirical and four machine learning models to estimate chlorophyll-a concentrations via simulated reflectance using fused Gaofen-6 and Sentinel-2 spectral response function. The results showed that the extreme gradient boosting tree model (one of the machine learning models) is the most accurate. The mean relative error (MRE) was 9.03%, and the root-mean-square error (RMSE) was 4.5 mg/m3 for the Sentinel-2 sensor, while for the fused Gaofen-6 image, MRE was 6.73%, and RMSE was 3.26 mg/m3. Thus, both fused Gaofen-6 and Sentinel-2 could estimate the chlorophyll-a concentrations in small water bodies. Since the fused Gaofen-6 exhibited a higher spatial resolution and Sentinel-2 exhibited a higher temporal resolution.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hengrui Chen ◽  
Hong Chen ◽  
Ruiyu Zhou ◽  
Zhizhen Liu ◽  
Xiaoke Sun

The safety issue has become a critical obstacle that cannot be ignored in the marketization of autonomous vehicles (AVs). The objective of this study is to explore the mechanism of AV-involved crashes and analyze the impact of each feature on crash severity. We use the Apriori algorithm to explore the causal relationship between multiple factors to explore the mechanism of crashes. We use various machine learning models, including support vector machine (SVM), classification and regression tree (CART), and eXtreme Gradient Boosting (XGBoost), to analyze the crash severity. Besides, we apply the Shapley Additive Explanations (SHAP) to interpret the importance of each factor. The results indicate that XGBoost obtains the best result (recall = 75%; G-mean = 67.82%). Both XGBoost and Apriori algorithm effectively provided meaningful insights about AV-involved crash characteristics and their relationship. Among all these features, vehicle damage, weather conditions, accident location, and driving mode are the most critical features. We found that most rear-end crashes are conventional vehicles bumping into the rear of AVs. Drivers should be extremely cautious when driving in fog, snow, and insufficient light. Besides, drivers should be careful when driving near intersections, especially in the autonomous driving mode.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ruixia Cui ◽  
Wenbo Hua ◽  
Kai Qu ◽  
Heran Yang ◽  
Yingmu Tong ◽  
...  

Sepsis-associated coagulation dysfunction greatly increases the mortality of sepsis. Irregular clinical time-series data remains a major challenge for AI medical applications. To early detect and manage sepsis-induced coagulopathy (SIC) and sepsis-associated disseminated intravascular coagulation (DIC), we developed an interpretable real-time sequential warning model toward real-world irregular data. Eight machine learning models including novel algorithms were devised to detect SIC and sepsis-associated DIC 8n (1 ≤ n ≤ 6) hours prior to its onset. Models were developed on Xi'an Jiaotong University Medical College (XJTUMC) and verified on Beth Israel Deaconess Medical Center (BIDMC). A total of 12,154 SIC and 7,878 International Society on Thrombosis and Haemostasis (ISTH) overt-DIC labels were annotated according to the SIC and ISTH overt-DIC scoring systems in train set. The area under the receiver operating characteristic curve (AUROC) were used as model evaluation metrics. The eXtreme Gradient Boosting (XGBoost) model can predict SIC and sepsis-associated DIC events up to 48 h earlier with an AUROC of 0.929 and 0.910, respectively, and even reached 0.973 and 0.955 at 8 h earlier, achieving the highest performance to date. The novel ODE-RNN model achieved continuous prediction at arbitrary time points, and with an AUROC of 0.962 and 0.936 for SIC and DIC predicted 8 h earlier, respectively. In conclusion, our model can predict the sepsis-associated SIC and DIC onset up to 48 h in advance, which helps maximize the time window for early management by physicians.


2021 ◽  
pp. 289-301
Author(s):  
B. Martín ◽  
J. González–Arias ◽  
J. A. Vicente–Vírseda

Our aim was to identify an optimal analytical approach for accurately predicting complex spatio–temporal patterns in animal species distribution. We compared the performance of eight modelling techniques (generalized additive models, regression trees, bagged CART, k–nearest neighbors, stochastic gradient boosting, support vector machines, neural network, and random forest –enhanced form of bootstrap. We also performed extreme gradient boosting –an enhanced form of radiant boosting– to predict spatial patterns in abundance of migrating Balearic shearwaters based on data gathered within eBird. Derived from open–source datasets, proxies of frontal systems and ocean productivity domains that have been previously used to characterize the oceanographic habitats of seabirds were quantified, and then used as predictors in the models. The random forest model showed the best performance according to the parameters assessed (RMSE value and R2). The correlation between observed and predicted abundance with this model was also considerably high. This study shows that the combination of machine learning techniques and massive data provided by open data sources is a useful approach for identifying the long–term spatial–temporal distribution of species at regional spatial scales.


2021 ◽  
Author(s):  
Seong Hwan Kim ◽  
Eun-Tae Jeon ◽  
Sungwook Yu ◽  
Kyungmi O ◽  
Chi Kyung Kim ◽  
...  

Abstract We aimed to develop a novel prediction model for early neurological deterioration (END) based on an interpretable machine learning (ML) algorithm for atrial fibrillation (AF)-related stroke and to evaluate the prediction accuracy and feature importance of ML models. Data from multi-center prospective stroke registries in South Korea were collected. After stepwise data preprocessing, we utilized logistic regression, support vector machine, extreme gradient boosting, light gradient boosting machine (LightGBM), and multilayer perceptron models. We used the Shapley additive explanations (SHAP) method to evaluate feature importance. Of the 3,623 stroke patients, the 2,363 who had arrived at the hospital within 24 hours of symptom onset and had available information regarding END were included. Of these, 318 (13.5%) had END. The LightGBM model showed the highest area under the receiver operating characteristic curve (0.778, 95% CI, 0.726 - 0.830). The feature importance analysis revealed that fasting glucose level and the National Institute of Health Stroke Scale score were the most influential factors. Among ML algorithms, the LightGBM model was particularly useful for predicting END, as it revealed new and diverse predictors. Additionally, the SHAP method can be adjusted to individualize the features’ effects on the predictive power of the model.


Author(s):  
Harsha A K

Abstract: Since the advent of encryption, there has been a steady increase in malware being transmitted over encrypted networks. Traditional approaches to detect malware like packet content analysis are inefficient in dealing with encrypted data. In the absence of actual packet contents, we can make use of other features like packet size, arrival time, source and destination addresses and other such metadata to detect malware. Such information can be used to train machine learning classifiers in order to classify malicious and benign packets. In this paper, we offer an efficient malware detection approach using classification algorithms in machine learning such as support vector machine, random forest and extreme gradient boosting. We employ an extensive feature selection process to reduce the dimensionality of the chosen dataset. The dataset is then split into training and testing sets. Machine learning algorithms are trained using the training set. These models are then evaluated against the testing set in order to assess their respective performances. We further attempt to tune the hyper parameters of the algorithms, in order to achieve better results. Random forest and extreme gradient boosting algorithms performed exceptionally well in our experiments, resulting in area under the curve values of 0.9928 and 0.9998 respectively. Our work demonstrates that malware traffic can be effectively classified using conventional machine learning algorithms and also shows the importance of dimensionality reduction in such classification problems. Keywords: Malware Detection, Extreme Gradient Boosting, Random Forest, Feature Selection.


2020 ◽  
Vol 9 (9) ◽  
pp. 507
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Stuart Phinn

Machine learning has been employed for various mapping and modeling tasks using input variables from different sources of remote sensing data. For feature selection involving high- spatial and spectral dimensionality data, various methods have been developed and incorporated into the machine learning framework to ensure an efficient and optimal computational process. This research aims to assess the accuracy of various feature selection and machine learning methods for estimating forest height using AISA (airborne imaging spectrometer for applications) hyperspectral bands (479 bands) and airborne light detection and ranging (lidar) height metrics (36 metrics), alone and combined. Feature selection and dimensionality reduction using Boruta (BO), principal component analysis (PCA), simulated annealing (SA), and genetic algorithm (GA) in combination with machine learning algorithms such as multivariate adaptive regression spline (MARS), extra trees (ET), support vector regression (SVR) with radial basis function, and extreme gradient boosting (XGB) with trees (XGbtree and XGBdart) and linear (XGBlin) classifiers were evaluated. The results demonstrated that the combinations of BO-XGBdart and BO-SVR delivered the best model performance for estimating tropical forest height by combining lidar and hyperspectral data, with R2 = 0.53 and RMSE = 1.7 m (18.4% of nRMSE and 0.046 m of bias) for BO-XGBdart and R2 = 0.51 and RMSE = 1.8 m (15.8% of nRMSE and −0.244 m of bias) for BO-SVR. Our study also demonstrated the effectiveness of BO for variables selection; it could reduce 95% of the data to select the 29 most important variables from the initial 516 variables from lidar metrics and hyperspectral data.


Sign in / Sign up

Export Citation Format

Share Document