scholarly journals Ensemble Modeling of the Impact of Climate Warming and Increased Frequency of Extreme Climatic Events on the Thermal Characteristics of a Sub-Tropical Lake

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1982 ◽  
Author(s):  
Gideon Gal ◽  
Gilboa Yael ◽  
Schachar Noam ◽  
Estroti Moshe ◽  
Dirk Schlabing

Lake ecosystems are impacted by changes in climatic conditions. Climate changes forecasted to occur are reflected in models by slow gradual changes over extended periods of time. Output from weather generators, on the other hand, can simulate short-term extreme conditions and weather patterns. In order to evaluate the likely impact of climate changes on a large sub-tropical lake, specifically the thermal regime of the lake, we constructed climate scenarios using a weather generator. The 30-year scenarios included no change in climate conditions, a gradual change, increased frequency of heat waves and a merging of the latter two. The projected impact on the lake’s physical properties was evaluated using an ensemble of 1-D hydrodynamic lake models. The gradual increase scenario had the largest impact on annual temperatures and stratification period; however, increased heat waves had a large effect on the summer lake conditions and introduced a larger degree of variability in water temperature. The use of the ensemble of models resulted in variability in the projected impacts; yet, the large degree of similarity between projected trends and patterns increased confidence in the results. The projected effect the heat waves will have on the lake conditions highlights the need to include heat waves in climate studies and the need for impact studies in order to better understand possible consequences for lake ecosystems.

2021 ◽  
Vol 58 (1) ◽  
pp. 132-150
Author(s):  
Cody J Schmidt ◽  
Bomi K Lee ◽  
Sara McLaughlin Mitchell

Many scholars examine the relationship between climate variability and intrastate conflict onset. While empirical findings in this literature are mixed, we know less about how climate changes increase the risks for conflicts between countries. This article studies climate variability using the issue approach to world politics. We examine whether climate variability influences the onset and militarization of interstate diplomatic conflicts and whether these effects are similar across issues that involve sovereignty claims for land (territory) or water (maritime, river). We focus on two theoretical mechanisms: scarcity ( abundance) and uncertainty. We measure these concepts empirically through climate deviation (e.g. droughts/floods, heat waves/cold spells) and climate volatility (greater short-term variance in precipitation/temperature). Analyses of issue claims in the Western Hemisphere and Europe (1901–2001) show that greater deviations and volatility in climate conditions increase risks for new diplomatic conflicts and militarization of ongoing issues and that climate change acts as a trigger for revisionist states.


Author(s):  
A. N. Polevoy ◽  
L. Yu. Bozhko ◽  
O. A. Barsukova

Harvest of agricultural crops depends on availability of biological properties of plants, aggregate of technological measures for plants growth, peculiarities of soil covering and weather and climate conditions, social importance of products and their economic value. Crop capacity of spring barley depends on many factors, among which there are the most important ones such as light, heat, moisture, mineral nutrition etc. Climate changes that became particularly noticeable during the recent decade cause change of agro-climatic conditions of spring barley growing, which, in their turn, cause change of rates of crops growth, change of parameters of formation of its productivity which significantly determines the level of crop capacity. Photosynthetic activity of plants depends mainly on supply of solar radiation as the primary source for all biological and physical processes taking place in plants. According to data of studies the role of solar radiation in plants’ life appears to be multilateral one and is determined not only by patterns of change of elements of plants’ photosynthetic activity depending on each other, but also by the influence of changes of agro-climatic and farming practices, plants’ density, standards and periods of irrigation and nutrition.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2012 ◽  
Author(s):  
Jan Fořt ◽  
Jiří Šál ◽  
Jan Kočí ◽  
Robert Černý

Facing the consequences of climate change and fuel price rises, the achievement of the requirements for low-energy consumption of buildings has become a challenging issue. On top of that, increased demands on indoor hygrothermal conditions usually require the utilization of additional heating, ventilation, and air-conditioning (HVAC) systems to maintain a comfortable environment. On this account, several advanced and modern materials are widely investigated as a promising way for reduction of the buildings’ energy consumption including utilization of passive heating/cooling energy. However, the efficiency and suitability of passive strategies depending on several aspects including the influence of location, exterior climatic conditions, load-bearing materials used, and insulation materials applied. The main objective of this study consists of the investigation of the energy performance benefits gained by the utilization of advanced materials in plasters by computational modeling. Results obtained from a computational simulation reveal the capability of the studied passive cooling/heating methods on the moderation of indoor air quality together with the reduction of the diurnal temperature fluctuation. Achieved results disclose differences in terms of energy savings for even small variation in outdoor climate conditions. Additionally, the effectivity of passive cooling/heating alters considerably during the summer and winter periods. Based on the analysis of simulated heat fluxes, the potential energy savings related to improved thermal properties of the applied plaster layer reached up to 12.08% and thus represent an interesting passive solution towards energy sustainability to meet the criteria on modern buildings.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2512
Author(s):  
Michał Musiał ◽  
Lech Lichołai

The article presents the results of multi-month field tests and numerical analyses describing the thermal functioning of mobile shading systems for building windows containing a phase-change heat accumulator. The experiments were conducted in the summer period with temperate climate conditions in Rzeszów (Poland). The tested shading system was dedicated to the daily life cycle of residents, taking into account both the need to illuminate the rooms with natural light and reducing the undesirable overheating of the rooms in the summer. The obtained empirical results showed a reduction in room overheating in the summer period by 29.4% from composite windows with a phase-change heat accumulator and a mobile shading system as compared to the reference composite window with an analogous mobile shading system. The database of empirical results allowed for the creation and verification of a numerical model of heat conversion, storage and distribution within the composite window containing phase change material and a mobile shading system. The verified model made it possible to analyse the thermal functioning of the modified transparent partitions in cool temperate, temperate and subtropical climates. The article is a solution to the problem of undesirable overheating of transparent building partitions by efficient storage and distribution of solar radiation energy thanks to the use of a mobile shading system and a phase change material, while presenting a useful tool enabling the prediction of energy gains in different climatic conditions.


2017 ◽  
Vol 14 ◽  
pp. 217-226 ◽  
Author(s):  
Valentina Grasso ◽  
Alfonso Crisci ◽  
Marco Morabito ◽  
Paolo Nesi ◽  
Gianni Pantaleo

Abstract. Investigating on society-related heat wave hazards is a global issue concerning the people health. In the last two decades, Europe experienced several severe heat wave episodes with catastrophic effects in term of human mortality (2003, 2010 and 2015). Recent climate investigations confirm that this threat will represent a key issue for the resiliency of urban communities in next decades. Several important mitigation actions (Heat-Health Action Plans) against heat hazards have been already implemented in some WHO (World Health Organization) European region member states to encourage preparedness and response to extreme heat events. Nowadays, social media (SM) offer new opportunities to indirectly measure the impact of heat waves on society. Using the crowdsensing concept, a micro-blogging platform like Twitter may be used as a distributed network of mobile sensors that react to external events by exchanging messages (tweets). This work presents a preliminary analysis of tweets related to heat waves that occurred in Italy in summer 2015. Using TwitterVigilance dashboard, developed by the University of Florence, a sample of tweets related to heat conditions was retrieved, stored and analyzed for main features. Significant associations between the daily increase in tweets and extreme temperatures were presented. The daily volume of Twitter users and messages revealed to be a valuable indicator of heat wave impact at the local level, in urban areas. Furthermore, with the help of Generalized Additive Model (GAM), the volume of tweets in certain locations has been used to estimate thresholds of local discomfort conditions. These city-specific thresholds are the result of dissimilar climatic conditions and risk cultures.


Author(s):  
Mohamed Abdelhamed ◽  
Mohamed Elshamy ◽  
Howard Wheater ◽  
Saman Razavi

Permafrost thaw has been observed in recent decades in the Northern Hemisphere and is expected to accelerate with continued global warming. Predicting the future of permafrost requires proper representation of the interrelated surface/subsurface thermal and hydrologic regimes. Land surface models (LSMs) are well suited for such predictions, as they couple heat and water interactions across soil-vegetation-atmosphere interfaces and can be applied over large scales. LSMs, however, are challenged by the long-term thermal and hydraulic memories of permafrost and the paucity of historical records to represent permafrost dynamics under transient climate conditions. In this study, we address the challenge of model initialization by characterizing the impact of initial climate conditions and initial soil frozen and liquid water contents on the simulation length required to reach equilibrium. Further, we quantify how the uncertainty in model initialization propagates to simulated permafrost dynamics. Modelling experiments are conducted with the Modélisation Environmentale Communautaire – Surface and Hydrology (MESH) framework and its embedded Canadian Land Surface Scheme (CLASS). The study area is in the Liard River basin in the Northwest Territories of Canada with sporadic and discontinuous regions. Results show that uncertainty in model initialization controls various attributes of simulated permafrost, especially the active layer thickness, which could change by 0.5-1.5m depending on the initial condition chosen. The least number of spin-up cycles is achieved with near field capacity condition, but the number of cycles varies depending on the spin-up year climate. We advise an extended spin-up of 200-1000 cycles to ensure proper model initialization under different climatic conditions and initial soil moisture contents.


Author(s):  
Manfred A. Lange

The present paper aims to elucidate the impact of climate change on the availability and security of water and energy in the Middle East and North Africa Region (MENA Region). The region is particularly challenged by a number of factors including a large variability of bio-geographical characteristics, extreme population growth over the last few decades and substantial societal and economical transitions as well as armed conflicts in some of the countries of the region. Anticipated changes in climate conditions will exacerbate the challenges with regard to providing sufficient amounts of water and energy to the communities in the region. Impacts of climate change will materialize as an increasing number of heat waves, primarily in urban structures and the decline in water availability as a result of enhanced droughts and a growing numbers of dry spells. The interrelationships between energy and water and their mutual dependencies are addressed by the Water-Energy-Nexus concept. With regard to the challenges addressed here, Cyprus and the Eastern Mediterranean are a particular point in case. Mitigation and adaptation strategies include enhanced efficiency of energy and water use, integrated technology assessments regarding electricity generation and the production of potable water and electricity through concentrated solar power.


Author(s):  
Natalia Michajlenko ◽  
Iryna Scherban

The analysis of contributing weather and climate in recreation and sport competitions during the cold period in Ukrainian Carpathians held. The results of the evaluation of the impact of weather and climate on the general condition and State of health of the person received. Reviewed by: day-to-day variability of atmospheric pressure, oxygen content. The conditions of the snow cover in mountainous areas and future trends of solid precipitation (snow, snow storm) during the cold period of the year described. Key words: recreation, weather types, climatic conditions, the cold period of the year.


Author(s):  
I. A. Dragavtseva ◽  
N. V. Mozhar ◽  
A. S. Romanenko ◽  
I. Yu. Savin ◽  
E. Yu. Prudnikova

The reaction of two pear varieties (Kieffer with reduced winter hardiness and Leven with increased winter hardiness) on the changing climatic conditions of winter-spring period from 1986 to 2018 on the territory of Krasnodar region was studied. The critical minimum temperature is detrimental to flower buds of the studied varieties in different phases of the winter-spring period. Thermal stress manifestation in time and space is calculated. Digital maps of dynamic changes in the periodicity of the temperature conditions in the winter-spring period for the analyzed pear varieties are compiled. A digital computer analysis of the evaluation of frost hazard territories of Krasnodar region for pears in changing climate conditions was carried out. The proposed scientific approach suggests the need for a transition from registering the impact on the productivity of fruit crops and their varieties of individual environmental factors to evaluate their relationship and interdependence over specific phases of development. It will allow more efficient use the natural potentials of crops, varieties and growing environments without additional capital investments.


Sign in / Sign up

Export Citation Format

Share Document