scholarly journals Leaf vs. Whole-Plant Biotic Attack: Does Vine Physiological Response Change?

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1429
Author(s):  
Tadeja Savi ◽  
Jose Carlos Herrera ◽  
Astrid Forneck

Phylloxera is one of the most invasive and widespread insects in viticulture. An increase in populations feeding on leaves and/or roots of formerly resistant grapevines has been observed, but information on leaf and whole plant phylloxera infestation effects is lacking. We monitored the water and carbon metabolism of vines (one rootstock x scion combination) inoculated with insects’ eggs on leaves (L) or both leaves and roots (R+L). Nonstructural carbohydrates (NSC) in infested and noninfested tissue of different organs and plant biomass were measured at the end of the experiment. At the peak of the biotic stress treatment, the plants reduced transpiration by about 30% compared to control, while photosynthesis remained unaffected. Lower soluble NSC were measured in infested than in the nearby noninfested tissue of both L and R+L groups, suggesting sugar consumption by the insect, while infested roots increased starch content by fivefold. NSC were depleted in noninfested roots of R+L plants as well, giving strength to the hypothesis of intense metabolites translocation in favor of the insect. A more distinct physiological depression in R+L vines compared to L was highlighted, even if the total biomass reduction was more marked in L plants. Our preliminary results suggest that the insect reprograms plant metabolism stimulating a more conservative water use, while competing with the host plant for carbon resources. Further studies should validate current results and quantify the NSC invested in the plant’s defense against the pest.

2016 ◽  
Vol 43 (12) ◽  
pp. 1194 ◽  
Author(s):  
Alanna J. Oiestad ◽  
John M. Martin ◽  
Michael J. Giroux

Increased expression of leaf or seed ADPglucose pyrophosphorylase activity (AGPase) has been shown to increase plant growth. However, no study has directly compared AGPase overexpression in leaves and/or seeds. In the present study, transgenic rice overexpressing AGPase in leaves or in seeds were crossed, resulting in four F2:3 homozygous genotypes with AGPase overexpression in leaves, seeds, both leaves and seeds, or neither tissue. The impact of AGPase overexpression in these genotypic groups was examined at the metabolic, transcriptomic, and plant growth levels. Leaf-specific AGPase overexpression increased flag leaf starch up to five times that of the wild type (WT) whereas overexpression of AGPase in both leaves and seeds conferred the greatest productivity advantages. Relative to the WT, AGPase overexpression in both leaves and seeds increased plant biomass and panicle number by 61% and 51%, respectively while leaf-specific AGPase overexpression alone only increased plant biomass and panicle number by 24 and 32% respectively. Extraction and analysis of RNA and leaf-specific metabolites demonstrated that carbon metabolism was broadly increased by AGPase overexpression in seeds and leaves. These findings indicate that stimulation of whole-plant growth and productivity can be best achieved by upregulation of starch biosynthesis in both leaves and seeds.


1986 ◽  
Vol 64 (12) ◽  
pp. 2993-2998 ◽  
Author(s):  
Steven F. Oberbauer ◽  
Nasser Sionit ◽  
Steven J. Hastings ◽  
Walter C. Oechel

Three Alaskan tundra species, Carex bigelowii Torr., Betula nana L., and Ledum palustre L., were grown in controlled-environment chambers at two nutrition levels with two concentrations of atmospheric CO2 to assess the interactive effects of these factors on growth, photosynthesis, and tissue nutrient content. Carbon dioxide concentrations were maintained at 350 and 675 μL L−1 under photosynthetic photon flux densities of 450 μmol m−2 s−1 and temperatures of 20:15 °C (light:dark). Nutrient treatments were obtained by watering daily with 1/60- or 1/8- strength Hoagland's solution. Leaf, root, and total biomass were strongly enhanced by nutrient enrichment regardless of the CO2 concentration. In contrast, enriched atmospheric CO2 did not significantly affect plant biomass and there was no interaction between nutrition and CO2 concentration during growth. Leaf photosynthesis was increased by better nutrition in two species but was unchanged by CO2 enrichment during growth in all three species. The effects of nutrient addition and CO2 enrichment on tissue nutrient concentrations were complex and differed among the three species. The data suggest that CO2 enrichment with or without nutrient limitation has little effect on the biomass production of these three tundra species.


Author(s):  
Manutsawan Manokieng ◽  
◽  
Arunothai Jampeetong ◽  

Abstract The effects of supplemental cations on growth, nitrogen, and mineral accumulation were assessed in Canna indica L. Similar sized 45 days-old plants were grown on a nutrient solution modified from Hoagland and Arnon (1950). The different cations were added to generate 6 treatments (n=4): (i) control (no cation added), (ii) 2.5 mM K+, (iii) 2.5 mM Ca2+, (iv) 75 mM Na+, (v) 1.25 mM K+ + 1.25 mM Ca2+ and (vi) 2.5 mM Ca2+ + 75 mM Na+, respectively. An experiment was carried out in the greenhouse for 49 days. The study found that supplemental K+ and K++ Ca2+ increased plant growth and total biomass. The highest SER was found in plants receiving supplemental K+. In contrast, SERs, leaf areas, and total biomass decreased in Na+ or Na++Ca2+ supplemented plants. The accumulated NO3- concentration (at the whole plant level) was also highest in the plants with supplemental K+ and K++Ca2+. The total nitrogen accumulation was higher in the K+, Ca2+, and K++Ca2+ supplemented plants than in the control plants. The results suggest that supplemental cations particularly K+ can enhance plant growth and nitrogen accumulation in C. indica. Therefore, cation supplementation could be an alternative technique to stimulate plant growth and improve nitrate removal in constructed wetlands. Keywords: Constructed wetland, Nitrate removal, Potassium, Tropical wetland plants


2021 ◽  
Vol 118 (43) ◽  
pp. e2112825118
Author(s):  
Giovanni Bortolami ◽  
Gregory A. Gambetta ◽  
Cédric Cassan ◽  
Silvina Dayer ◽  
Elena Farolfi ◽  
...  

In the context of climate change, plant mortality is increasing worldwide in both natural and agroecosystems. However, our understanding of the underlying causes is limited by the complex interactions between abiotic and biotic factors and the technical challenges that limit investigations of these interactions. Here, we studied the interaction between two main drivers of mortality, drought and vascular disease (esca), in one of the world’s most economically valuable fruit crops, grapevine. We found that drought totally inhibited esca leaf symptom expression. We disentangled the plant physiological response to the two stresses by quantifying whole-plant water relations (i.e., water potential and stomatal conductance) and carbon balance (i.e., CO2 assimilation, chlorophyll, and nonstructural carbohydrates). Our results highlight the distinct physiology behind these two stress responses, indicating that esca (and subsequent stomatal conductance decline) does not result from decreases in water potential and generates different gas exchange and nonstructural carbohydrate seasonal dynamics compared to drought.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 917
Author(s):  
Domenico Ronga ◽  
Aldo Dal Prà ◽  
Alessandra Immovilli ◽  
Fabrizio Ruozzi ◽  
Roberto Davolio ◽  
...  

The aim of this work was to study the yield and nutritional characteristics of winter wheat hay. A selection of cultivars recommended for three main purposes: grain, whole plant (biomass) and dual purpose (grain and biomass) production were cultivated and harvested from heading to grain dough stages. Yield dry weight (YDW), dry matter (DM) and undigested neutral detergent fiber (uNDF) increased with advancing maturity, ranging from 9 t ha−1, 20 and 11% of DM to 16 t ha−1, 43 and 17% of DM, respectively; while crude protein (CP) and neutral detergent fiber (NDF) decreased from 11 and 59% of DM to 6 and 54% of DM, respectively. Our study showed that dual purpose winter wheat cultivars displayed similar performance of CP, NDF and net energy for lactation, when harvested at heading or grain milk stages. In addition, winter wheat recommended to be harvested as whole plant showed similar values of YDW, sugar and starch contents, when harvested at grain dough and milk stages. These characteristics are strategic in hay production, allowing a more flexible harvesting strategy. These results might be useful to improve the hay production, given useful information on harvest time and improving agricultural sustainability covering the soil in autumn and winter.


HortScience ◽  
2016 ◽  
Vol 51 (9) ◽  
pp. 1144-1147 ◽  
Author(s):  
Thomas E. Marler ◽  
Nirmala Dongol

The profile of nonstructural carbohydrates (NSC) was quantified to determine sugar and starch relationships of megagametophyte tissue during Cycas micronesica K.D. Hill seed ontogeny. Field work occurred in northern Guam where megastrobili were marked and dated as they emerged from stem apices of plants in a natural population. Seeds were harvested beginning 6 months after megastrobili emergence and continuing until 28 months, and gametophyte tissue was separated from the remainder of each seed. Carbohydrates within lyophilized gametophyte tissue were quantified by high-pressure liquid chromatography. The levels of glucose and fructose declined from a high at 6 months to a homeostasis at 11 months, and the levels of sucrose similarly declined from 6 months to a homeostasis at ≈14 months. Starch content exceeded sugar content and increased from 6 months to reach a homeostasis at ≈18 months. Maltose was not detected in any sample. Stoichiometric quotients changed dramatically until ≈14 months, when they became fairly stable until 28 months. Starch concentration was ≈5-fold greater than sugar concentration at 6 months, and increased to ≈15-fold greater than sugar concentration by 28 months. Total NSC in mature megagametophytes was almost 70% on a dry weight basis. Our results are in agreement with the biological function of this haploid tissue, as copious carbohydrate resources are readily available to support embryo and seedling growth.


1997 ◽  
Vol 48 (1) ◽  
pp. 91 ◽  
Author(s):  
A. Hardy ◽  
C. Huyghe ◽  
J. Papineau

Despite the high oil and protein content of the seeds, the agronomic potential of Lupinus mutabilis Sweet, a South American lupin species, is limited because of its low seed yield and its uncertain maturity. Dry matter accumulation and partitioning, and seed yield, of 2 genotypes (early-maturing LM34 and late-maturing LM268) were studied in 2 seasons at 2 densities at Lusignan, France. Total dry matter at harvest was, on average, 680 g/m2. The mainstem and first-order branches mainly contributed to total plant biomass but pods were only produced on the mainstem. On average, across the different crops, the maximum leaf area index (LAI) was 2· 8. The duration of LAI above 2·5 was short and not correlated with the total dry matter production. The partitioning of the dry matter varied according to the genotype. LM34 showed enhanced pod growth, its harvest index (HI) was 0·32, and seed yield averaged 1·28 t/ha. LM268 showed enhanced vegetative growth, both HI and seed yield were lower (0·16 and 1·13 t/ha, respectively), and whole plant maturity was never reached. For both genotypes during the pod filling, no remobilisation of assimilates occurred from stems to pods.


2020 ◽  
Vol 49 (2) ◽  
pp. 205-213
Author(s):  
Rohaizad Mislan ◽  
Z Sulaiman ◽  
WD Noordin ◽  
SNA Abdullah ◽  
MR Islam ◽  
...  

Effects of water frequencies on growth and physiological response of different clones of rubber were investigated. Different clones of rubber were screened with different watering frequencies as everyday watering (EW), every 2 days (E2D), every 3 days (E3D), every 5 days (E5D), and every 7 days (E7D). The treatments EW and E2D were found to be suitable for all the five clones for increasing as shown in plant height. A similar result was also found for plant biomass after 4 and 8 months of treatments. Noticeably, watering had a pronounced positive effect on clone RRIM 3001 and greatly increased vigorous growth as shown in its highest height, largest girth circumference and relative growth rate after 8 months of different watering frequencies. This clone equally showed superior performance with a significantly higher total plant biomass after 4 and 8 months of watering frequencies compared to the other four clones. The result could be used in water management and the clone RRIM 3001 could be suitable for rubber production at the nursery stage and replanting exercise in rubber plantations.


1970 ◽  
Vol 8 (2) ◽  
pp. 108-116
Author(s):  
Shahrina Akhtar ◽  
Jalal Uddin Ahmed ◽  
Abdul Hamid ◽  
Md Rafiqul Islam

A study was conducted to evaluate 100 chickpea genotypes to explore their genetic diversity in respect of emergence and growth attributes. A high genotypic variation was observed in the characters studied. The highest positive correlation corresponded to the root mass and total plant biomass of the seedlings. Seedling biomass production was highly subjective to seedling vigor. Using discriminant function analysis, the first two functions contributed 46.2 and 39.0%, and altogether 85.2% of the variability among the genotypes. Function 1 was positively related to dry weight of root and total plants. The character with the greatest weight on function 2 was seedling emergence rate. The total dry weight of seedlings played the most dominant role in explaining the maximum variance in the genotypes. The genotypes were grouped into six clusters. Each cluster had specific seedling characteristics and the clusters 5 and 6 were closely related and clearly separated from clusters 1 and 4 for their higher amount of root and total biomass production, and vigorous seedlings, where as, the genotypes in cluster 2 and 3 were intermediate. The genotypes in cluster 5 followed by cluster 6 appeared to be important resources for selecting and developing chickpea variety. Keywords: Chickpea; genotypes; seedling; quality DOI: 10.3329/agric.v8i2.7584 The Agriculturists 8(2): 108-116 (2010)


Sign in / Sign up

Export Citation Format

Share Document