scholarly journals The Slope Association Type as a Comparative Index for the Evaluation of Environmental Risks

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3333
Author(s):  
Detlef Deumlich ◽  
Lidia Völker ◽  
Roger Funk ◽  
Tobias Koch

The topography is one of the determining site characteristics, of which the slope inclination is significant for natural science aspects, including the estimation of water erosion risk and as a criterion for agricultural subsidies. The slopes within an area vary greatly and occupy very different proportions of the area. Algorithms that take this heterogeneity into account were developed in the 1970s with the medium-scale agricultural site mapping (MMK). It also contains the slope association types (SAT, in German: “Hangneigungsflächentyp”), which classifies different slopes and summarizes them as one value per reference area. The SAT can be used across various scales and different targets. Applicability is given to soil and water conservation tasks, administrative tasks as field selection or agricultural subsidies, and over a wide range of scales from small catchments areas to whole landscape analyses. Thus, one value on an area basis characterizes an important topographic factor.

Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 952 ◽  
Author(s):  
Simone Di Prima ◽  
Mirko Castellini ◽  
Mario Pirastru ◽  
Saskia Keesstra

Human needs like food and clean water are directly related to good maintenance of healthy and productive soils. A good understanding of human impact on the natural environment is therefore necessary to preserve and manage soil and water resources. This knowledge is particularly important in semi-arid and arid regions, where the increasing demands on limited water supplies require urgent efforts to improve water quality and water use efficiency. It is important to keep in mind that both soil and water are limited resources. Thus, wise use of these natural resources is a fundamental prerequisite for the sustainability of human societies. This Special Issue collects 15 original contributions addressing the state of the art of soil and water conservation research. Contributions cover a wide range of topics, including (1) recovery of soil hydraulic properties; (2) erosion risk; (3) novel modeling, monitoring and experimental approaches for soil hydraulic characterization; (4) improvement of crop yields; (5) water availability; and (6) soil salinity. The collection of manuscripts presented in this Special Issue provides more insights into conservation strategies for effective and sustainable soil and water management.


2017 ◽  
Vol 18 (1) ◽  
pp. 214-221
Author(s):  
K. L. Lam ◽  
P. A. Lant ◽  
S. J. Kenway

Abstract During the Millennium Drought in Australia, a wide range of supply-side and demand-side water management strategies were adopted in major southeast Australian cities. This study undertakes a time-series quantification (2001–2014) and comparative analysis of the energy use of the urban water supply systems and sewage systems in Melbourne and Sydney before, during and after the drought, and evaluates the energy implications of the drought and the implemented strategies. In addition, the energy implications of residential water use in Melbourne are estimated. The research highlights that large-scale adoption of water conservation strategies can have different impacts on energy use in different parts of the urban water cycle. In Melbourne, the per capita water-related energy use reduction in households related to showering and clothes-washing alone (46% reduction, 580 kWhth/p/yr) was far more substantial than that in the water supply system (32% reduction, 18 kWhth/p/yr). This historical case also demonstrates the importance of balancing supply- and demand-side strategies in managing long-term water security and related energy use. The significant energy saving in water supply systems and households from water conservation can offset the additional energy use from operating energy-intensive supply options such as inter-basin water transfers and seawater desalination during dry years.


2012 ◽  
Vol 39 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Maria Balota ◽  
Steve McGrath ◽  
Thomas G. Isleib ◽  
Shyam Tallury

Abstract Water deficit, i.e., rainfall amounts and distribution, is the most common abiotic stress that limits peanut production worldwide. Even though extensive research efforts have been made to improve drought tolerance in peanut, performance of genotypes largely depends upon the environment in which they grow. Based on greenhouse experiments, it has been hypothesized that stomata closure under high vapor pressure deficit (VPD) is a mechanism of soil water conservation and it has been shown that genotypic variation for the response of transpiration rate to VPD in peanut exists. The objective of this study was to determine the relationship between stomatal conductance (gs) and VPD for field grown peanut in Virginia-Carolina (VC) rainfed environments. In 2009, thirty virginia-type peanut cultivars and advanced breeding lines were evaluated for gs at several times before and after rain events, including a moisture stress episode. In 2010, eighteen genotypes were evaluated for gs under soil water deficit. In 2009, VPD ranged from 1.3 to 4.2 kPa and in 2010 from 1.78 to 3.57 kPa. Under water deficit, genotype and year showed a significant effect on gs (P  =  0.0001), but the genotype × year interaction did not. During the water deficit episodes while recorded gs values were relatively high, gs was negatively related to VPD (R2  =  0.57, n  =  180 in 2009; R2  =  0.47, n  =  108 in 2010), suggesting that stomata closure is indeed a water conservation mechanism for field grown peanut. However, a wide range of slopes among genotype were observed in both years. Genotypes with significant negative relationships of gs and VPD under water deficit in both years were Florida Fancy, Gregory, N04074FCT, NC-V11, and VA-98R. While Florida Fancy, Gregory, and NC-V11 are known to be high yielding cultivars, VA-98R and line N04074FCT are not. The benefit of stomatal closure during drought episodes in the VC environments is further discussed in this paper.


2013 ◽  
Vol 59 (No. 2) ◽  
pp. 87-91 ◽  
Author(s):  
M. Nasiri

The maps of altitude, geology, vegetation cover and land use were prepared and classified as the main criteria to locate soil and water conservation programs. Analytical Hierarchy Process (AHP) was used to determine the relative priorities of these criteria by pairwise comparison. All the thematic maps were then integrated using the overlay process in Geographical Information System (GIS) and the final map of soil erosion risk was produced. Results indicated that vegetation cover was given the highest weight (0.494). The geology was assigned the second highest weight (0.313), as the main cause of initiation of the erosion of erodible lands. Land-use change has a local influence on soil erosion, so it was assigned the third weight (0.151). Altitude is a low-impact variable for predicting the water and soil conservation areas.  


2020 ◽  
Vol 24 (6) ◽  
pp. 1005-1015
Author(s):  
Torbjörn Tyler

Abstract The diversity and community composition of moths (both macro- and micromoths) at 32 sites, representing a wide range of habitat types (forests, grasslands, wetlands, agricultural and urban areas) within a restricted region in central Scania, southern-most Sweden, was investigated by use of light moth traps and compared with vascular plant species richness and habitat characteristics. The results revealed a highly significant general association between vegetation composition and the composition of the moth community and multivariate (CCA) analyses indicated light availability and soil fertility parameters (pH and macronutrients) to be the habitat characteristics that best correlated with moth community composition. Less strong, but still significant, positive relationships between moth abundance and local vascular plant diversity were also revealed. Moth species richness was positively correlated with diversity of woody plant genera in the neighborhood, but not with local vascular plant diversity in general. As for more general site characteristics, there were tendencies for higher moth richness and abundance at sites with more productive soils (well-drained, high pH, high nutrient availability), while shading/tree canopy cover, management, soil disturbance regimes and nectar production appeared unrelated to moth community parameters. It is concluded that local moth assemblages are strongly influenced by site characteristics and vegetation composition. Implications for insect conservation: The results show that obtaining moth data on a local scale is useful for conservation planning and does not need to be very cumbersome. Local moth assemblages monitored are indeed related to local site characteristics of conservation relevance.


Author(s):  
Marilyn Joyce ◽  
Andrew J. Marcotte ◽  
Richard Barker ◽  
Edward J. Klinenberg

A methodology for identifying ergonomics risk factors and control strategies in office environments has been developed and pilot tested. Developed as part of an overall ergonomics program being implemented by the United States Air Force, the employees impacted include both civilian and military personnel performing a wide range of administrative tasks typically performed in offices. The research design included: a focused literature review; strategic site visits; and review of criteria established by the Air Force; an iterative developmental process of a Screening Survey and an Ergonomics Assessment Methodology Guide; and testing. The results indicate that the process can be used as an effective means for identifying and controlling ergonomics hazards in administrative work areas.


2020 ◽  
Vol 12 (11) ◽  
pp. 4536
Author(s):  
Joseph R. Sanford ◽  
Horacio A. Aguirre-Villegas ◽  
Rebecca A. Larson

Pork producers can have difficulty operating or expanding existing facilities or establishing new facilities based on perceived negative impacts to the environment and surrounding community. It is critical to understand the characteristics and practices adopted in swine facilities to evaluate the extend of these impacts. A survey, completed by 69 pork producers in Wisconsin, was conducted to assess how facility design and management affect odor, water quality, water consumption, air quality, traffic, and noise. A wide range of production facilities participated in the survey where 29% of respondents were classified as very small (<35 animal units, AU), 16% as small (35–70 AU), 20% as medium (70–300 AU), 23% as large (300–1000 AU), and 12% as permitted (>1000 AU) facilities. Generally, facilities integrated numerous odor control strategies which resulted in high calculated odor scores and the absence of odor complaints. However, the lack of nutrient management planning and other practices for water quality, particularly for facilities with less than 300 AU, indicates there are areas that need improvement. Regardless of facility size, water reduction practices were very commonly reported indicating water conservation is important. Pit ventilation and mechanical ventilation was reported at 58 and 85% of the surveyed facilities, which highlights the need to increase the adoption of mechanical ventilation for air quality, especially in farms with under-barn storage. Using trucks instead of tractors and pumping instead of trucks and tractors can reduce traffic around facilities during manure hauling season.


Holzforschung ◽  
2011 ◽  
Vol 65 (3) ◽  
Author(s):  
Gordon Bradbury ◽  
Brad M. Potts ◽  
Chris L. Beadle ◽  
Greg Dutkowski ◽  
Matthew Hamilton

Abstract Australian blackwood (Acacia melanoxylon R.Br.) is a high-quality appearance-grade timber species native to eastern Australia. It is characterised by dark-coloured heartwood, with colour varying from pale straw to red-brown and walnut brown, and pale cream-coloured sapwood. This wide range in heartwood colour is expressed as between- and within-tree variation, and is regarded as a problem in markets where colour consistency is important. To understand the genetic and environmental control of heartwood colour, multiple colour measurements were taken from stem cores from 16 open-pollinated family collections of blackwood planted across three 19-year-old progeny trials. Data was analysed with a mixed model with within-tree variation modelled using a three-node cubic spline. Significant genetic, environmental and genetic-by-environment interactions were detected, not only in the variation in between-tree mean heartwood colour but also in the pattern of within-tree heartwood colour variation. In general, heartwood colour became darker, less yellow and more red towards the sapwood/heartwood boundary. To control the between- and within-tree heartwood colour variation in blackwood plantations, care is needed to not only select genotypes with the desired wood colour and colour variation but also site characteristics that allow expression of that colour.


2021 ◽  
Author(s):  
Ali Massumi ◽  
Kabir Sadeghi ◽  
Omid Ghojoghi

Abstract Buildings constructed in seismic zones are not only damaged by mainshocks but may also be damaged by the impact of aftershocks and cause them to collapse. Therefore, studying the behavior of the damaged structures due to the mainshock and aftershock helps in post-mainshock decision making and also in the selection of suitable aftershock records for seismic assessing of the structure under earthquake sequences. This paper presents the effects of aftershock ground motion on the collapse capacity of post-mainshock buildings. The mean period (Tm), predominant velocity period (Tg), frequency bandwidth (Ω), the 5%-95% significant duration (Ds) and seismic records of different sites were selected to evaluate the effect of its characteristics on the collapse capacity of buildings. The intensity of the ground motions was determined by the first-mode spectral acceleration with 5% damping. Collapse capacities of two non-ductile reinforced concrete (RC) frames with 3 and 6 stories were evaluated using a set of 62 aftershock records with a wide range of characteristics. Box plot collapse diagrams and fragility curves have been developed by applying the incremental dynamic analysis (IDA). The results show that in the frequency content with a longer period, the probability of its collapse is higher. In addition, the high significant duration of aftershocks increases the collapse probability of structures. Also, the evaluation of the site characteristics shows differences in collapse capacities of the same frames in varying sites. Therefore, the effect of aftershock characteristics on the capacity of the structures is significant and it is necessary to carefully determine the seismic sequences’ recordings for the evaluation of the seismic behavior of the structures.


Author(s):  
Sawssen NAFTI

This paper examines the relationship between green growth, food safety and environnement protection. Our analysis is based on a theoretical study aimed to know if the green economy is an effective solution to the problem of poverty and under-nourishment and protective of the environment in developing countrys or it is just a component of any strategy for growth economy. In this way, green economic theories encompass a wide range of ideas all dealing with the interconnected relationship between people and the environment. Our theorical study shows that green economy have an important role to reducing environmental risks and ecological scarcities, also is a good solution to reduce poverty, under-nourishment and assure food safety, if political orders is made.


Sign in / Sign up

Export Citation Format

Share Document