scholarly journals Preparation and Cytotoxic Evaluation of PGV-1 Derivative, CCA-1.1, as a New Curcumin Analog with Improved-Physicochemical and Pharmacological Properties

Author(s):  
Rohmad Yudi Utomo ◽  
Febri Wulandari ◽  
Dhania Novitasari ◽  
Beni Lestari ◽  
Ratna Asmah Susidarti ◽  
...  

Purpose: This study aimed to challenge the anticancer potency of PGV-1 and obtain a new compound (Chemoprevention-Curcumin Analog 1.1, CCA-1.1) with improved chemical and pharmacological properties. Methods: CCA-1.1 was prepared by changing the ketone group of PGV-1 into a hydroxyl group with NaBH4 as the reducing agent. The product was purified under preparative layer chromatography and confirmed with HPLC to show about 98% purity. It was tested for its solubility, stability, and cytotoxic activities on several cancer cells. The structure of the product was characterized using 1HNMR, 13C-NMR, FT-IR, and HR-mass spectroscopy. Results: Molecular docking analysis showed that CCA-1.1 performed similar or better interaction to NF-kB pathway-related signaling proteins (HER2, EGFR, IKK, ER-alpha, and ER-beta) and reactive oxygen species metabolic enzymes (NQO1, NQO2, GSTP1, AKC1R1, and GLO1) compared with PGV-1, indicating that CCA-1.1 exhibits the same or better anticancer activity than PGV-1. CCA-1.1 also showed better solubility and stability than PGV-1 in aqueous solution at pH 1.0–7.4 under light exposure at room temperature. The cytotoxic activities of CCA-1.1 against several (10) cancer cell lines revealed the same or better potency than PGV-1. Conclusion: In conclusion, CCA-1.1 performs better chemical and anticancer properties than PGV-1 and shows promise as an anticancer agent with high selectivity.

2020 ◽  
Vol 23 (10) ◽  
pp. 1064-1079
Author(s):  
Ahmet Alper Öztürk ◽  
İrem Namlı ◽  
Kadri Güleç ◽  
Şennur Görgülü

Aims: To prepare lamivudine (LAM)-loaded-nanoparticles (NPs) that can be used in lung cancer treatment. To change the antiviral indication of LAM to anticancer. Background: The development of anticancer drugs is a difficult process. One approach to accelerate the availability of drugs is to reclassify drugs approved for other conditions as anticancer. The most common route of administration of anticancer drugs is intravenous injection. Oral administration of anticancer drugs may considerably change current treatment modalities of chemotherapy and improve the life quality of cancer patients. There is also a potentially significant economic advantage. Objective: To characterize the LAM-loaded-NPs and examine the anticancer activity. Methods: LAM-loaded-NPs were prepared using Nano Spray-Dryer. Properties of NPs were elucidated by particle size (PS), polydispersity index (PDI), zeta potential (ZP), SEM, encapsulation efficiency (EE%), dissolution, release kinetics, DSC and FT-IR. Then, the anticancer activity of all NPs was examined. Results: The PS values of the LAM-loaded-NPs were between 373 and 486 nm. All NPs prepared have spherical structure and positive ZP. EE% was in a range of 61-79%. NPs showed prolonged release and the release kinetics fitted to the Weibull model. NPs structures were clarified by DSC and FT-IR analysis. The results showed that the properties of NPs were directly related to the drug:polymer ratio of feed solution. NPs have potential anticancer properties against A549 cell line at low concentrations and non-toxic to CCD 19-Lu cell line. Conclusion: NPs have potential anticancer properties against human lung adenocarcinoma cells and may induce cell death effectively and be a potent modality to treat this type of cancer. These experiments also indicate that our formulations are non-toxic to normal cells. It is clear that this study would bring a new perspective to cancer therapy.


2013 ◽  
Vol 64 (2) ◽  
Author(s):  
Siti Nur Atiqah Md Othman ◽  
Norazah Basar ◽  
Siti Pauliena Mohd Bohari

P. macrocarpa is a well known Indonesian medicinal plant which is traditionally claimed to have anticancer properties. To date, there are numerous cytotoxic studies conducted on crude extracts of this plant. However, there are limited informations available regarding cytotoxic activity of the compounds isolated from this plant. Thus, this study investigated cytotoxic activity of two benzophenones derivatives identified as 2,6,4'-trihydroxy-4-methoxybenzophenone (1) and 6,4'-dihydroxy-4-methoxybenzophenone-2-O-β-D-glucopyranoside (2) isolated from the ethyl acetate extract. Cytotoxic activities of these compounds were performed against human cervical carcinoma cell line (HeLa) and mouse embryonic fibroblast cell line (3T3) using MTT assay. The result showed that benzophenone (1)  exhibited low cytotoxic effect against HeLa and 3T3 cell lines with IC50 values of 132 µg/ml and 158 µg/ml, repectively while benzophenone (2) was non toxic against HeLa and 3T3 cell lines are because the IC50 is more than 250 µg/ml. These findings may sheds light on the actual properties of this plant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zao-Hui Li ◽  
Dan Yu ◽  
Nan-Nan Huang ◽  
Jun-Kai Wu ◽  
Xiao-Wei Du ◽  
...  

AbstractPanax ginseng is one of the oldest and most generally prescribed herbs in Eastern traditional medicine to treat diseases. Several studies had documented that ginseng leaves have anti-oxidative, anti-inflammatory, and anticancer properties similar to those of ginseng root. The aim of this research was to forecast of the molecular mechanism of ginseng leaves on lung cancer by molecular docking and network pharmacology so as to decipher ginseng leaves' entire mechanism. The compounds associated with ginseng leaves were searched by TCMSP. TCMSP and Swiss Target Prediction databases were used to sort out the potential targets of the main chemical components. Targets were collected from OMIM, PharmGKB, TTD, DrugBank and GeneCards which related to immunity and lung cancer. Ginseng leaves exert its lung cancer suppressive function by regulating the several signaling proteins, such as JUN, STAT3, AKT1, TNF, MAPK1, TP53. GO and KEGG analyses indicated that the immunoreaction against lung cancer by ginseng leaves might be related to response to lipopolysaccharide, response to oxidative stress, PI3K-Akt, MAPK and TNF pathway. Molecular docking analysis demonstrated that hydrogen bonding was interaction's core forms. The results of CCK8 test and qRT-PCR showed that ginseng leaves inhibit cell proliferation and regulates AKT1 and P53 expression in A549. The present study clarifies the mechanism of Ginseng leaves against lung cancer and provides evidence to support its clinical use.


2018 ◽  
Vol 1 (1) ◽  
pp. 264-270
Author(s):  
Hady Wiraputra ◽  
Marline Nainggolan ◽  
Panal Sitorus

Tanaman buni (Antidesma bunius (L.) Spreng.) secara tradisional telah digunakan untuk hipertensi, takikardia, anemia, sifilis, antikanker, antioksidan, sumber pewarna alami dan antidiabetes. Saponin merupakan senyawa fitokimia yang mempunyai kemampuan membentuk busa dan mengandung aglikon polisiklik yang berikatan dengan satu atau lebih gula. Penelitian ini bertujuan untuk melakukan karakterisasi senyawa saponin hasil isolasi dari daun buni dengan spektrofotometer ultraviolet dan inframerah. Simplisia daun buni dilakukan karakterisasi kemudian diekstraksi dengan cara maserasi bertingkat menggunakan pelarut n-heksana dan etanol 80%. Selanjutnya ekstrak etanol dihidrolisis dengan HCl 2N kemudian difraksi dengan pelarut kloroform. Isolasi dilakukan terhadap fraksi kloroform dengan cara kromatografi lapis tipis preparatif menggunakan fase diam silika gel GF254 dan fase gerak yang sesuai. Isolat yang diperoleh diuji kemurnian dengan KLT 2 arah dan dikarakterisasi menggunakan spektrofotometer ultraviolet dan inframerah. Hasil pemeriksaan karakterisasi simplisia diperoleh kadar air 7,32%, kadar sari larut dalam etanol 52,70%, kadar sari larut dalam air 23,25%, kadar abu total 6,86% dan kadar abu tidak larut dalam asam 0,94%. Pemisahan fraksi kloroform dengan KLT menggunakan fase gerak n-heksana-etilasetat perbandingan 5:5 diperoleh noda 13 dan hasil KLT preparatif diperoleh 2 isolat murni yaitu isolat 1 (ungu merah) dengan Rf 0,92 dan isolat 2 (biru) dengan Rf 0,78. Hasil karakterisasi isolat 1 diperoleh panjang gelombang maksimum pada 208 nm dan dijumpai adanya gugus hidroksil, gugus -CH alifatis, ikatan C=C, gugus –CH2, gugus –CH3, dan gugus C-O. Hasil karakterisasi isolat 2 diperoleh panjang gelombang maksimum pada 204 nm dan adanya gugus hidroksil, gugus -CH alifatis, gugus –CH2, gugus –CH3, dan gugus C-O. Buni (Antidesmabunius (L.) Spreng.) has been traditionally used for the treatment of hypertension, tachycardia, anemia, syphilis, and used asanti-cancer, anti-oxidant, natural dye, and anti-diabetic. Saponin is a phytochemical compound which has capability in forming foam and contains polycyclic aglycone that binds with one or more glucose. This research aimed to conduct the characterization of saponin compound from buni leaves with ultraviolet spectrophotometer and infrared. Buni leaves simplicia was characterizedand extracted using sequential maceration method with n-hexane and 80% ethanol. The ethanol extract was hydrolyzed with HCl 2N and fractionized using chloroform solvent. Isolation of chloroform fraction was done using preparative thin-layer chromatography using silent phase of silica gel GF 254 and suitable mobile phase. Isolates obtained was taken into purity test with two dimensions thin-layer chromatography and characterized using ultraviolet spectrophotometer and infrared. The characterized simplicia resulted with 7.32% of water content, 52.70% of dissolved content in ethanol, 23.25% of dissolvedcontent in water, 6.86% of total ash content, and 0.94% of undissolved ash content in acid. Fractinationof chloroform fraction with thin-layer chromatography using mobile phase ofn-hexane-ethyl acetate with 5:5 ration resulted with 13 spotsand the result of the preparative thin-layer chromatography resulted 2 pure isolates which are isolate 1 (purple-red) with Rf 0.92 and isolate 2 (blue) with Rf 0.78. The characterization of isolate 1 resulted that the maximum wave lengthwas 208 nm with hydroxyl group, –CH aliphatic group, C=C bond, –CH2 group, –CH3 group, and C–O group. The characterization of isolate 2 resulted that the maximum wave lengthwas204 nm with hydroxyl group, –CH aliphatic group, –CH2 group, –CH3 group, and C–O group.


2018 ◽  
Vol 55 (1B) ◽  
pp. 152
Author(s):  
Thuy Thu Truong

In this study, the synthesis of a telechelic linker bearing both azide and thiol functional groups was described. The reaction conditions were investigated to optimize the reaction yield. The product was analyzed using thin layer chromatography (TLC) and proton nuclear magnetic resonance (1H NMR). The employment of the obtained azide–thiol linker in heterogeneous polymer “click” functionalization was demonstrated for the first time, which was monitored by an online FT–IR method. The obtained telechelic azide–thiol linker is envisioned to be useful chemical tools to link macromolecular chains via orthogonal click reactions.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 824
Author(s):  
Fengqin Wang ◽  
Tiankui Huang ◽  
Shurong Rao ◽  
Qian Chen ◽  
Cheng Huang ◽  
...  

Graphene oxide (GO) was used as a catalyst carrier, and after the hydroxyl group in GO was modified by 3-aminopropyltrimethoxysilane (MPTMS), axial coordination and immobilization with homogeneous chiral salenMnCl catalyst were carried out. The immobilized catalysts were characterized in detail by FT–IR, TG–DSC, XPS, EDS, SEM, X-ray, and AAS, and the successful preparation of GO-salenMn was confirmed. Subsequently, the catalytic performance of GO-salenMn for asymmetric epoxidation of α-methyl-styrene, styrene, and indene was examined, and it was observed that GO-salenMn could efficiently catalyze the epoxidation of olefins under an m-CPBA/NMO oxidation system. In addition, α-methyl-styrene was used as a substrate to investigate the recycling performance of GO-salenMn. After repeated use for three times, the catalytic activity and enantioselectivity did not significantly change, and the conversion was still greater than 99%. As the number of cycles increased, the enantioselectivity and chemoselectivity gradually decreased, but even after 10 cycles, the enantiomeric excess was 52%, which was higher than that of the homogeneous counterpart under the same conditions. However, compared to fresh catalysts, the yield decreased from 96.9 to 55.6%.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 126 ◽  
Author(s):  
Hanqi Zhang ◽  
Bing Wang ◽  
Yanna Wang ◽  
Heng Zhou

The phenol-containing phthalonitrile resin is a kind of self-curing phthalonitrile resin with high-temperature resistance and excellent properties. However, the onefold phthalonitrile resin is unattainable to cured completely, and the brittleness of the cured product is non-negligible. This paper focuses on solving the above problems by blending novolac resin into phenol-containing phthalonitrile. Under the action of abundant hydroxyl group, the initial curing temperature and gelation time at 170 °C decrease by 88 °C and 2820 s, respectively, monitored by DSC and rheological analysis. FT-IR spectra of copolymers showed that the addition of novolac increased the conversion rate of nitrile. When the novolac mass fraction is 10%, the peak of nitrile group disappears, which means the complete reaction. The mechanical test of blends composites shows that the maximum fracture strain of 10 wt% novolac addition is 122% higher than those of neat phthalonitrile composites on account of the introduction of flexible novolac chain segments. The mechanical properties are sensitive to elevated post-cured temperature; this is consistent with the result of morphological investigation using SEM. Finally, the dynamic mechanical analysis indicated that the glass transition temperature heightened with the increase of novolac content and post-curing temperature.


2014 ◽  
Vol 2 (10) ◽  
pp. 1335-1343 ◽  
Author(s):  
Yukako Fukushi ◽  
Hironori Yoshino ◽  
Junya Ishikawa ◽  
Masanobu Sagisaka ◽  
Ikuo Kashiwakura ◽  
...  

Liquid-crystalline molecules organize into a spherical particle to penetrate the cell membrane in A549 lung cancer cells and the molecules interact with the nucleus via the hydroxyl and ester groups to induce cell death.


2006 ◽  
Vol 6 (9) ◽  
pp. 3032-3039 ◽  
Author(s):  
Yong Hu ◽  
Yin Ding ◽  
Yuan Li ◽  
Xiqun Jiang ◽  
Changzheng Yang ◽  
...  

The stability and lyophilization of core–shell PCL-PEG-PCL micelles were investigated by fluorescence spectra, DLS, DSC, WAXD, and FT-IR. The prepared micelles were not stable when they were stored in aqueous dispersion under different condition. Their size increased in the first 20 days and decreased gradually when the storage period was extended. Lyophilization experiment showed that the cryoprotective agent (glucose) was an essential additive to protect the micelles from aggregating during the lyophilization process. After lyophilizing and re-dispersion, the PCL-PEG-PCL micelles became larger in size compared to as-prepared ones. DSC, WAXD, and IR measurements indicated the hydrogen bonding was formed between the hydroxyl group in glucose and the carbonyl group in PCL-PEG-PCL micelles. The effect of added glucose on protection of micelles from aggregation can be explained by the formation of hydrogen bonding with PCL-PEG-PCL micelles and the formation of solid glucose matrix.


2018 ◽  
Vol 13 (11) ◽  
pp. 1934578X1801301
Author(s):  
Quynh Mai Thi Ngo ◽  
Thao Quyen Cao ◽  
Le Son Hoang ◽  
Manh Tuan Ha ◽  
Mi Hee Woo ◽  
...  

Medicinal plants have been shown to have tremendous potential for the development of new drug molecules for various serious diseases. Piper nigrum L. (Piperaceae) is a well-known spice considered to be the “The King of Spices” among various spices. The phytochemicals isolated from P. nigrum L. are potent biological agents with anticancer properties. Our study was designed to evaluate the cytotoxic activities of chemical compounds from the dried fruits of P. nigrum L. Sixteen known compounds (1–16), including fifteen alkaloids, were isolated and identified. Compounds 10, 11, 12, 13, 14, and 15 exhibited cytotoxic activities against a human cervical cancer cell line, Hela, with IC50 values of 49.8, 40.4, 23.1, 22.1, 41.0, and 26.9 μM, respectively. Compounds 10, 12, and 15 exhibited cytotoxicities against a breast cancer cell line, MCF-7, with IC50 values of 36.9, 55.7, and 36.0 μM, respectively. Compounds 6, 12, 13, 14, 15, and 16 exhibited cytotoxic activities against the human promyelocytic leukemia cell line, HL-60, with IC50 values of 26.9, 51.4, 51.6, 54.4, 16.0, and 21.1 μM, respectively.


Sign in / Sign up

Export Citation Format

Share Document