scholarly journals Metabolomic characterization of colorectal cancer cell lines highlighting stage-specific alterations during cancer progression

Bioimpacts ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 147-156
Author(s):  
Hazwani Mohd Yusof ◽  
Sharaniza Ab-Rahim ◽  
Wan Zurinah Wan Ngah ◽  
Sheila Nathan ◽  
A Rahman A Jamal ◽  
...  

Introduction: Metabolomic studies on various colorectal cancer (CRC) cell lines have improved our understanding of the biochemical events underlying the disease. However, the metabolic profile dynamics associated with different stages of CRC progression is still lacking. Such information can provide further insights into the pathophysiology and progression of the disease that will prove useful in identifying specific targets for drug designing and therapeutics. Thus, our study aims to characterize the metabolite profiles in the established cell lines corresponding to different stages of CRC. Methods: Metabolite profiling of normal colon cell lines (CCD 841 CoN) and CRC cell lines corresponding to different stages, i.e., SW 1116 (stage A), HT 29 and SW 480 (stage B), HCT 15 and DLD-1 (stage C), and HCT 116 (stage D), was carried out using liquid chromatography-mass spectrometry (LC-MS). Mass Profiler Professional and Metaboanalyst 4.0 software were used for statistical and pathway analysis. METLIN database was used for the identification of metabolites. Results: We identified 72 differential metabolites compared between CRC cell lines of all the stages and normal colon cells. Principle component analysis and partial least squares discriminant analysis score plot were used to segregate normal and CRC cells, as well as CRC cells in different stages of the disease. Variable importance in projection score identified unique differential metabolites in CRC cells of the different stages. We identified 7 differential metabolites unique to stage A, 3 in stage B, 5 in stage C, and 5 in stage D. Conclusion: This study highlights the differential metabolite profiling in CRC cell lines corresponding to different stages. The identification of the differential metabolites in CRC cells at individual stages will lead to a better understanding of the pathophysiology of CRC development and progression and, hence, its application in treatment strategies.

2022 ◽  
Author(s):  
Safaa M. Naes ◽  
Sharaniza Ab-Rahim ◽  
Musalmah Mazlan ◽  
Nurul Azmir Amir Hashim ◽  
Amirah Abdul Rahman

Abstract Background Colorectal cancer (CRC) is one of the most prevalent malignant cancers worldwide. Although the purine metabolism pathway is known to be vital for cancer cells survival mechanism, not much is known on ENT2 role in CRC development and its association with purine metabolites. Hence this study is aimed to determine the level of hypoxanthine phosphoribosyl transferase (HPRT), hypoxanthine, uric acid (UA), and the activity of xanthine oxidase (XO) and relate the findings with the ENT2 expression level in different CRC stages. Methods and results Normal colon cell line; CCD-841CoN and a panel of human CRC cell lines; SW480, HCT15 and HCT116, representing different CRC stages; Dukes’ B, C, and D respectively, have been used to measure HPRT, hypoxanthine/xanthine, UA levels and the activity of XO by biochemical assays. The level of ENT2 gene expression was also performed by qRT-PCR. The levels of HPRT, hypoxanthine were significantly higher (P< 0.05), while XO and UA were lower (P< 0.05) in all CRC stages as compared to the normal colon cells. Furthermore, ENT2 expression was found to be increased in all CRC stages. Despite having the highest level of HPRT and hypoxanthine, ENT2 level is lower in Dukes' D when compared to Dukes' B and C. Conclusion The rate of salvage pathway is increased in CRC development as indicated by the elevated levels of HPRT and hypoxanthine in different CRC stages. Increase ENT2 expression implies its importance in assisting hypoxanthine uptake. This step is vital in order to increase DNA synthesis via hypoxanthine recycling. Thus, ENT2 may be a potential marker in therapeutic development.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4417
Author(s):  
Rabin Neupane ◽  
Saloni Malla ◽  
Mariam Sami Abou-Dahech ◽  
Swapnaa Balaji ◽  
Shikha Kumari ◽  
...  

A novel series of 4-anilinoquinazoline analogues, DW (1–10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.


2015 ◽  
Vol 407 (26) ◽  
pp. 7857-7863 ◽  
Author(s):  
Jiangjiang Zhu ◽  
Danijel Djukovic ◽  
Lingli Deng ◽  
Haiwei Gu ◽  
Farhan Himmati ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1878 ◽  
Author(s):  
Robert H. Berndsen ◽  
Nathalie Swier ◽  
Judy R. van Beijnum ◽  
Patrycja Nowak-Sliwinska

Patients with advanced colorectal cancer (CRC) still depend on chemotherapy regimens that are associated with significant limitations, including resistance and toxicity. The contribution of tyrosine kinase inhibitors (TKIs) to the prolongation of survival in these patients is limited, hampering clinical implementation. It is suggested that an optimal combination of appropriate TKIs can outperform treatment strategies that contain chemotherapy. We have previously identified a strongly synergistic drug combination (SDC), consisting of axitinib, erlotinib, and dasatinib that is active in renal cell carcinoma cells. In this study, we investigated the activity of this SDC in different CRC cell lines (SW620, HT29, and DLD-1) in more detail. SDC treatment significantly and synergistically decreased cell metabolic activity and induced apoptosis. The translation of the in-vitro-based results to in vivo conditions revealed significant CRC tumor growth inhibition, as evaluated in the chicken chorioallantoic membrane (CAM) model. Phosphoproteomics analysis of the tested cell lines revealed expression profiles that explained the observed activity. In conclusion, we demonstrate promising activity of an optimized mixture of axitinib, erlotinib, and dasatinib in CRC cells, and suggest further translational development of this drug mixture.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 735 ◽  
Author(s):  
Kwang Seock Kim ◽  
Dongjun Jeong ◽  
Ita Novita Sari ◽  
Yoseph Toni Wijaya ◽  
Nayoung Jun ◽  
...  

Our current understanding of the role of microRNA 551b (miR551b) in the progression of colorectal cancer (CRC) remains limited. Here, studies using both ectopic expression of miR551b and miR551b mimics revealed that miR551b exerts a tumor suppressive effect in CRC cells. Specifically, miR551b was significantly downregulated in both patient-derived CRC tissues and CRC cell lines compared to normal tissues and non-cancer cell lines. Also, miR551b significantly inhibited the motility of CRC cells in vitro, including migration, invasion, and wound healing rates, but did not affect cell proliferation. Mechanistically, miR551b targets and inhibits the expression of ZEB1 (Zinc finger E-box-binding homeobox 1), resulting in the dysregulation of EMT (epithelial-mesenchymal transition) signatures. More importantly, miR551b overexpression was found to reduce the tumor size in a xenograft model of CRC cells in vivo. Furthermore, bioinformatic analyses showed that miR551b expression levels were markedly downregulated in the advanced-stage CRC tissues compared to normal tissues, and ZEB1 was associated with the disease progression in CRC patients. Our findings indicated that miR551b could serve as a potential diagnostic biomarker and could be utilized to improve the therapeutic outcomes of CRC patients.


Author(s):  
Maja Larsen ◽  
Matthias Kuhlmann Kuhlmann ◽  
Michael Hvam ◽  
Kenneth Howard

Background: Medulloblastoma (MB) is the most common malignant childhood brain tumor with the propensity todisseminate at an early stage, and is associated with high morbidity. New treatment strategies are needed toimprove cure rates and to reduce life-long cognitive and functional deficits associated with current therapies.Extracellular Vesicles (EVs) are important players in cell-to-cell communication in health and diseases. A clearerunderstanding of cell-to-cell communication in tumors can be achieved by studying EV secretion inmedullospheres. This can reveal subtle modifications induced by the passage from adherent to non-adherentgrowth, as spheres may account for the adaptation of tumor cells to the mutated environment.Methods: Formation of medullospheres from MB cell lines stabilized in adherent conditions was obtained throughculture conditioning based on low attachment flasks and specialized medium. EVs collected by ultracentrifugation,in adherent conditions and as spheres, were subjected to electron microscopy, NanoSight measurements andproteomics.Results: Interestingly, iron carrier proteins were only found in EVs shed by CSC-enriched tumor cell population ofspheres. We used iron chelators when culturing MB cell lines as spheres. Iron chelators induced a decrease innumber/size of spheres and in stem cell populations able to initiate in vitro spheres formation.Conclusions: This work suggests a not yet identified role of iron metabolism in MB progression and invasion andopens the possibility to use chelators as adjuvants in anti-tumoral chemotherapy.


2013 ◽  
Vol 31 (4_suppl) ◽  
pp. 430-430
Author(s):  
Veronika Buxhofer-Ausch ◽  
Christoph A. Ausch ◽  
Heike Bauer ◽  
Marina Mollik ◽  
Aida Larijani ◽  
...  

430 Background: Organic anions transporters (OATPs) are important for tumor progression and therapeutic response by regulating cellular levels of hormones, second messenger proteins and drugs. OATP4A1 is a transporter of pro-inflammatory prostaglandin E2 and may contribute to cancer progression. Data on the expression of OATP4A1 and its clinical impact in primary colorectal cancer (CRC) is rare. Our study was designed to proof the overexpression of OATP4A1 in primary CRC. Methods: Frozen samples from 20 unselected CRC patients (pat) and five CRC cell lines were analyzed for OATP4A1 mRNA expression by real time PCR (mean level normalized to the calibrator, MNE). Immunohistochemistry was performed on paraffin- embedded tumor sections from 50 CRC pat., UICC 0-II (25/50 with subsequent relapse). An automatic quantitative image analysis program was applied to quantify OATP4A1 expression. Expression and intensity was correlated with clinical parameters and relapses. Results: Significant (p>0.05) higher levels of OATP4A1 mRNA were observed in 20 cancer samples as compared to adjacent non-cancerous tissue (2.44 vs. 0.46 MNE). The highest expression (9.85 MNE) was observed in a well-differentiated tumor sample. Similar high levels were observed in the COGA1A cell line, expression in the other cell lines ranged between 1.83 and 0.28 MNE. Immunoreactive staining for OATP4A1 was located in the membrane and occasionally in the cytosol of tumor cells, it was exclusively membrane located in the adjacent non-cancerous epithelial cells. The staining intensity was significantly higher in cancer cells compared to non-cancerous areas (1528±326 vs.376±218) while staining of stroma cells was only occasionally detectable. Surprisingly, the highest OATP4A1 levels were observed in immune cells (2839±381 vs.298±56). Data on the clinical impact of OATP4A1 in the early stage CRC pat. will be presented at the meeting. Conclusions: The profound expression of OATP4A1 in CRC cells and in the inflammatory infiltrates supports its implication on cancer progression. Suitability of OATP4A1 as a potential prognostic marker has to be established on a larger patient collective.


2019 ◽  
Vol 37 (4_suppl) ◽  
pp. 535-535
Author(s):  
Reyes Gonzalez Exposito ◽  
Maria Semmianikova ◽  
Beatrice Griffiths ◽  
Khurum Hayat Khan ◽  
Louise J Barber ◽  
...  

535 Background: The bispecific antibody CEA-TCB binds Carcino-Embryonic Antigen (CEA) on cancer cells and CD3 on T cells. This triggers T cell killing of colorectal cancer cell lines expressing moderate to high levels of CEA at the cell surface (Bacac, Clin Cancer Res 2016). Patient derived organoids (PDOs) may more accurately represent patient tumors than established cell lines. Yet, determinants of CEA-TCB resistance have not been studied in PDOs. Methods: PDOs were established from biopsies of eight multidrug-resistant metastatic CRCs, GFP labelled and adapted to 2D culture. Allogenic CD8 T cells and CEA-TCB or a non-targeting control antibody were added and cancer cell killing and growth were monitored for 10 days. CEA expression of PDOs was determined by FACS. Results: CRC PDOs could be categorized into three groups based on CEA cell-surface expression: CEAhigh (n = 3), CEAlow (n = 2), and CEA heterogeneous PDOs (n = 3) that stably maintained populations of both CEAhigh and CEAlow cells, which has not previously been described in CRC cell lines. Heterogeneity of cell-surface CEA expression is common in CRC cells in patients, supporting that PDOs may better represent these tumors than established cell lines. CEAhigh cells were sensitive whereas CEAlow cells showed resistance to CEA-TCB. All PDOs with heterogeneous CEA expression were resistant to CEA-TCB, suggesting that CEA-negative cells maintain cancer cell growth. Culture of FACS sorted CEAhigh and CEAlow cells from PDOs with heterogeneous CEA expression demonstrated high plasticity of CEA expression which may contribute to rapid resistance acquisition through CEA antigen loss. Conclusions: These results suggest that cell-surface CEA expression is a major determinant of CEA-TCB sensitivity and resistance in PDOs. In addition, we identified heterogeneous CEA expression in several PDOs and demonstrated that this could confer CEA-TCB resistance in vitro. These PDO models are likely to provide insights into the mechanism of CEA loss and may inform therapeutic opportunities to counter CEA-TCB resistance. RNA-sequencing and functional experiments are ongoing to investigate this and will be presented.


Author(s):  
Stefano Piatto Clerici ◽  
Maikel Peppelenbosch ◽  
Gwenny Fuhler ◽  
Sílvio Roberto Consonni ◽  
Carmen Veríssima Ferreira-Halder

Colorectal cancer (CRC) is in the top 10 cancers most prevalent worldwide, affecting equally men and women. Current research on tumor-derived extracellular vesicles (EVs) suggests that these small extracellular vesicles (sEVs) play an important role in mediating cell-to-cell communication and thus potentially affecting cancer progression via multiple pathways. In the present study, we hypothesized that sEVs derived from different CRC cell lines differ in their ability to reprogram normal human fibroblasts through a process called tumor education. The sEVs derived from CRC cell lines (HT29 and HCT116) were isolated by a combination of ultrafiltration and polymeric precipitation, followed by characterization based on morphology, size, and the presence or absence of EV and non-EV markers. It was observed that the HT29 cells displayed a higher concentration of sEVs compared with HCT116 cells. For the first time, we demonstrated that HT29-derived sEVs were positive for low-molecular-weight protein tyrosine phosphatase (Lmwptp). CRC cell-derived sEVs were uptake by human fibroblasts, stimulating migratory ability via Rho-Fak signaling in co-incubated human fibroblasts. Another important finding showed that HT29 cell-derived sEVs are much more efficient in activating human fibroblasts to cancer-associated fibroblasts (CAFs). Indeed, the sEVs produced by the HT29 cells that are less responsive to a cytotoxic agent display higher efficiency in educating normal human fibroblasts by providing them advantages such as activation and migratory ability. In other words, these sEVs have an influence on the CRC microenvironment, in part, due to fibroblasts reprogramming.


Sign in / Sign up

Export Citation Format

Share Document