scholarly journals Analysis of Unconscious Properties and Strength Measurements for Concrete Containing Copper Slag-Review

Author(s):  
Velumani M ◽  
Sakthivel S ◽  
Yuvaraj K

The main aim of the environmental protection agencies and the government are to seek ways and means to minimize the problems of disposal and health hazards of by products. It is considered as a waste material which could have a promising future in construction industry as substitute of either cement or coarse aggregates or fine aggregates. Copper slag is one of the replacement mechanisms of material in concrete. Use of copper slag as a replacement for fine aggregate in concrete cubes various strength measurements was experimentally investigated in this study. Mainly contents of that M35 conventional concrete and copper slag as a replacement of fine aggregate  in 10%, 20%, 30%, 40%,50%, 60%, 80%, and 100% and also Portland Pozzolana Cement is noted. In this regard, laboratory study including water absorption test, bond strength, and percentage of voids, compressive strength & bulk density were conducted in ppc cement concrete which made by copper slag waste as a replacement of fine aggregate and PPC. A substitution up to 40-50% as a copper slag as a sand replacement yielded comparable strength to that of the conventional concrete. However, addition of more copper slag resulted in strength reduction due to the increase in the free water content in the mix, cured period in a curing tank for later resulting at 28 and 60 days.

Author(s):  
Jamshed Alam

An experimental analysis was conducted to study the effects of using copper slag as a fine aggregate (FA) and the effect of fly ash as partial replacement of cement on the properties high strength concrete. In this analysis total ten concrete mixtures were prepared, out of which five mixes containing different proportions of copper slag ranging from 0% (for the control mix) to 75% were prepared and remaining five mixes containing fly ash as partial replacement of cement ranging from 6% to 30% (all mixes contains 50% copper slag as sand replacements). Concrete matrix were tested for compressive strength, tensile strength and flexural strength tests. Addition of copper slag as sand replacement up to 50% yielded comparable strength with that of the control matrix. However, further additions of copper slag, caused reduction in strength due to an increment of the free water content in the mix. Concrete mix with 75% copper slag replacement gave the lowest compressive strength value of approximately 80 MPa at 28 days curing period, which is almost 4% more than the strength of the control mix. For this concrete containing 50% copper slag, fly ash is introduced in the concrete to achieve the better compressive, split and flexural strengths. It was also observed that, introduction of the fly ash gave better results than concrete containing 50% copper slag. When concrete prepared with 18 % of fly ash, the strength has increased approximately 4%, and strength decreased with further replacements of the cement with fly ash. Hence, it is suggested that 50% of copper slag can be used as replacement of sand and 18% fly ash can be used as replacement of cement in order to obtain high strength concrete.


Author(s):  
Najib Nicolas Gerges ◽  
Camille Amine Issa ◽  
Samer Ahmad Fawaz ◽  
Jacques Jabbour ◽  
Johnny Jreige ◽  
...  

Conventional concrete aggregate consists of sand (fine aggregate) and various sizes and shapes of gravel or stones (coarse aggregate). However, there is a growing interest in substituting alternative aggregate materials, largely as a potential use for recycled materials. While there is significant research on many different materials for aggregate substitutes such as granulated coal ash, blast furnace slag or various solid wastes including fiberglass waste materials, granulated plastics, paper and wood products or wastes, sintered sludge pellets and others. Recycled waste glasses were used as coarse and fine aggregates replacement in concrete.  Coarse aggregates were replaced with Green Bottles coarse aggregates at third, half, two thirds, and 100% replacement ratios. The replacement of a third coarse aggregate was established as being the most suitable for retaining the properties of the concrete mix design. As for fine aggregates, in order to account for the numbers of variables and clearly establish a bench mark, the sand grading, color of glass, source of waste glass (bottles and non-bottles), and design mix strength were used as parameters. Fine aggregates from green, brown, and transparent bottles in addition to clear window waste glass were used. Concrete properties were tested in fresh and hardened states. The incorporation of glass sand regardless of the ratios of replacement showed no significant influence on fresh or mechanical properties of concrete except for the case of transparent bottles. Transparent bottles due to the wide source of obtainability have introduced a non-uniform factor that caused discrepancy compared to the rest of the group.


2021 ◽  
Vol 1019 ◽  
pp. 82-91
Author(s):  
I. Rohini ◽  
R. Padmapriya

Copper slag can be considered as waste product which could have a favorable future in construction industry as a substitution to fine aggregates in concrete. Concrete is a very brittle material and in due course of time it tends to crack .These cracks, expands and corrodes the steel reinforcement which intensify the cost of maintenance and decreases the structural stability over periods of time. To avoid crack formation in concrete microorganism can be directly added to concrete during the mixing stage which is called as bacteria impregnated concrete. Bio concrete makes use of calcium carbonate precipitation in the presence of the suitable media results in microbial induced calcite crystals. This work reports an experimental procedure to investigate the effect of using copper slag in concrete when it is remedied by microorganism. Five series of concrete mixtures were prepared with different proportions of copper slag ranging from 0%, 25%, 50%, 75% and 100% to fine aggregate. Copper slag concrete mixtures were treated with 1% and 2% microorganisms by the weight of cement. All Specimens were cured for 7, 14 and 28 days before testing. Mechanical properties such as Compressive strength and Flexural Strength of Bacterial copper slag concrete were found and compared with the conventional concrete. The highest Compressive strength obtained was 45.6 Mpa at 75% substitution of copper slag with 2% microorganism and the corresponding strength for control mix was 26.8Mpa. The highest flexural strength obtained was 10.3Mpa and the corresponding strength for control mix was 4.5Mpa.It has been observed that 75% replacement of copper slag can be effectively used as a replacement for fine aggregate when it is treated by Microorganisms.


Author(s):  
Rizwan Ahmad Khan ◽  

This paper investigates the fresh and durability properties of the high-performance concrete by replacing cement with 15% Silica fume and simultaneously replacing fine aggregates with 25%, 50%, 75% and 100% copper slag at w/b ratio of 0.23. Five mixes were analysed and compared with the standard concrete mix. Fresh properties show an increase in the slump with the increase in the quantity of copper slag to the mix. Sorptivity, chloride penetration, UPV and carbonation results were very encouraging at 50% copper slag replacement levels. Microstructure analysis of these mixes shows the emergence of C-S-H gel for nearly all mixes indicating densification of the interfacial transition zone of the concrete.


Author(s):  
Atif Jawed

Abstract: Pervious concrete is a special type of concrete, which consists of cement, coarse aggregates, water and if required and other cementations materials. As there are no fine aggregates used in the concrete matrix, the void content is more which allows the water to flow through its bodyThe main aim of this project was to improve the compressive strength characteristics of pervious concrete. But it can be noted that with increase in compressive strength the void ratio decreases. Hence, the improvement of strength should not affect the porosity property because it is the property which serves its purpose. In this investigation work the compressive strength of pervious concrete is increased by a maximum of 18.26% for 28 days when 8% fine aggregates were added to standard pervious concrete Keywords: W/C ratio, pervious Concrete, sugarcane bagasse’s ash, rice husk ash compressive strength, fine aggregates


2016 ◽  
Vol 847 ◽  
pp. 437-444 ◽  
Author(s):  
Ying Liang Tian ◽  
Wen Cai Liu ◽  
Su Ping Cui ◽  
Shi Bing Sun ◽  
Yi Wang ◽  
...  

In recent decades, high-tech electrical equipment has drastically proliferated instead of Cathode Ray Tube (CRT), making CRT funnel glass potential hazardous solid waste. Due to a relatively high level of lead, CRT funnel glass could be used as a potential material for the production of anti-radioactive concrete. In our study the CRT funnel glass , which was separated as aggregate in the concrete, was reduced to 4.75-25 mm (coarse aggregates) and less 4.75 mm (fine aggregates) in the production of anti-radioactive concrete. Mixes containing 0%, 20%, 40% , 60%, 80% and 100% (volume percentage) of CRT funnel glass to replace fine aggregate and coarse aggregate (respectively or simultaneously)) were prepared. The influence of the size, shape and replacement percentage of aggregates on workability, compressive strength and radiation shielding performance were determined. It was found that the replacement of natural aggregate with recycled CRT glass considerably improved the slump and radiation shielding performance but reduced compressive strength. The optimum percentage of waste funnel glass used as fine aggregate and coarse aggregate was 40%. The results clearly showed that the CRT funnel glass performed a significant enhancement in radiation shielding properties.


2015 ◽  
Vol 754-755 ◽  
pp. 427-431
Author(s):  
Shamshinar binti Salehuddin ◽  
Nur Liza Rahim ◽  
Norlia Mohamad Ibrahim ◽  
Siti Aza Nurdiana Tajri ◽  
Mohd Zuhaidi Zainol Abidin

Usage of waste materials as concrete mixture can reduce the waste management crisis in the world. Used tyres were widely researched as an alternative source of aggregates replacement in concrete mixture. This research is to study the behaviour of concrete incorporating rubber tyre crumb as fine aggregate replacement. The workability, compression strength and water absorption of this concrete will be determined and then compared to normal concrete. Motorcycle inner tube will be used as rubber source and it will be shredded to crumbs. Three samples of concrete with rubber as fine aggregates were prepared. Rubber crumbs will be used to replace fine aggregates in 2.5, 5.0 and 7.5% in mass. Normal concrete were prepared separately as control for comparison. Concrete mixture of 1:2:4 and 0.5 of water cement ratio were used. Slump test were done to test the workability of each mix. Twelve sample cubes from (150mm x 150mm x 150mm) each mix were prepared and cured for 7, 14 and 28 days. Compression tests were performed for each mix cube at age 7, 14 and 28 days. Water absorption test were done at age 28 days. Results revealed that rubberized concrete has better workability than normal concrete. They also have smaller compressive value and higher water absorption compared to normal concrete.


In recent days, there is an intense need for an alternate cost effective and sustainable raw material for concrete which does not make the structure inferior in strength. An experimental study on the utilization of the waste plastic and M-sand in the place of river sand and aggregate partially was performed in paper. In the scenario of scarcity of river sand due to the territorial government action and restriction of usage because of the eco and environmental consideration, M-Sand is found to be an effective replacement and cost effective material. Concrete specimens were casted with combination of M-sand and plastic waste with 5%, 10%, 15%, 20% and 25% and compared against control mix. Cube test for compressive strength study, cylinder test for split tensile strength study and prism test for flexural strength study were done with the proposed concert mixture. All the specimens and tests were done for different curing period of 7, 14 and 28 days. The results obtained from the proposed mix of concrete are compared with the conventional concrete mix specimen respectively. The replacement of fine aggregates reduces the quantity of river sand to be used in concrete and also plastic fibres are proved to be more economical. Positive performance of the concrete with waste plastic and M-Sand as partial replacement of river sand was observed on all the experiments and found optimal in sustainable and economical performance.


Concrete is a material which widely used in construction industry. The present investigation deals with the study of partial replacement of fine aggregate by Nylon Glass Granules in concrete. The fine aggregates are replaced by 0%, 10%, 20% and 30% by Nylon Glass Granules by volume of natural sand in M35 grade of concrete. Additionally, to increase the tensile strength of concrete 1% of Steel Fiber by volume of cement were added to all the mixes containing Nylon Glass Granules. The concrete produced by such ingredients were cured for 7 and 28 days to evaluate its hardened properties. The 28days hardened properties of concrete revealed that maximum strength is observed for the mix which possesses 20% replacement of fine aggregate by Nylon Glass Granules compared with the conventional concrete, thus it is said to be the optimum mix


Author(s):  
Wojciech Kubissa ◽  
Roman Jaskulski

In the article the possibility of using surface blast-cleaning waste (copper slag based) as a replacement of fine aggregate in high performance concrete manufacturing was presented. Concrete with w/c ratio 0.45 and 360 kg/m3 dosage of cements: CEM I 42.5R, CEM II/B-V 42.5N and CEM III/A 42.5N was tested. The consistency measured in table flow test was assumed as 420 ± 30 mm so superplasticizer was used. The replacement rate of the fine aggregate 0–2 mm with the copper slag (CS) waste was 66 %. Concrete mixtures with sand served as reference. The performed tests focused on: compressive and tensile strength (both after 28 days), sorptivity, free water absorption capacity, Torrent air permeability, and chloride ingress depth after salt fog treatment. A freeze resistance test was also carried out according to PN-B-06265. The obtained results showed that the strength and some other tested properties of concrete mixtures with copper slag waste were similar or better than those of the mixtures with sand. The results of the tests indicate that the concrete with copper slag waste is more tight than the concrete with sand and therefore is more durable.


Sign in / Sign up

Export Citation Format

Share Document