scholarly journals The study of cracking of sheet polycarbonate by the method of exposure to its surface of adsorption active liquid media

2020 ◽  
pp. 23-27
Author(s):  
A. V. Markov ◽  
D. I. Derivolkov ◽  
D. S. Duvanov

The effect of the composition of a liquid mixture of n-propanol with toluene on the rate of cracking in stressed polycarbonate sheets was studied. It is shown that the dependence of cracking time on stress can be described using equations in which the coefficient values depend on the ratio of the components of this test mixture. The method of wetting the surface of a sheet of monolithic polycarbonate with a test adsorption-active mixture (n-propanol with toluene) can be used not only to assess the quality of polycarbonate products, but also to measure the residual stresses in them. The conclusion is made that the influence of the investigated test liquid mixtures on the cracking of polycarbonate is multifactorial.

2018 ◽  
Author(s):  
Ibukun Makinde

Gas condensates are liquid mixtures of high-boiling hydrocarbons of various structures, separated from natural gases during their production at gas condensate fields. When transporting gas through pipelines, the following gas quality conditions should be met:i.During transportation, gases should not cause corrosion of pipelines, fittings, instruments, etc.ii.The quality of the gas must ensure its transportation in a single-phase state i.e., liquid hydrocarbons, gas condensates and hydrates should not form in the pipelines.In order for gas condensates to meet the above-mentioned quality conditions during storage or transportation, they must be stabilized. Gas condensate stabilization is the process of “boiling off” light hydrocarbons from the condensate that would otherwise increase the vapor pressure when conditions are fluctuating.


2014 ◽  
Vol 10 ◽  
pp. 27-31
Author(s):  
R.Kh. Bolotnova ◽  
U.O. Agisheva ◽  
V.A. Buzina

The two-phase model of vapor-gas-liquid medium in axisymmetric two-dimensional formulation, taking into account vaporization is constructed. The nonstationary processes of boiling vapor-water mixture outflow from high-pressure vessels as a result of depressurization are studied. The problems of shock waves action on filled by gas-liquid mixture volumes are solved.


2007 ◽  
Vol 345-346 ◽  
pp. 1437-1440
Author(s):  
Tae Hyun Baek ◽  
Seung Kee Koh ◽  
Jie Cheng

Pre-produced triplate transition joint assemblies are widely used in shipbuilding industry to make welds between aluminum and steel for a number of years now. The straight-shaped transition joint assemblies are bent during shipbuilding. So it is necessary to study the residual stresses created by punch forming, which would have heavy effects on the quality of structural parts. ABAQUS is a suite of powerful engineering simulation programs, based on the finite element method. In this paper, ABAQUS was used as the main tool to simulate the residual stresses in a triplate transition joint after unloading. Punch-pressing was carried to simulate bending moment in ABAQUS. The triplate is consisted of baselayer (steel: Lloyd’s Shipplate Gr. A), interlayer (pure aluminum: Al99.5) and superlayer (Al-Mg alloy: AlMg4.5Mn). Results from the ABAQUS analysis showed that increasing the radius of punch significantly reduced the von Mises residual stresses in steel. Changes of von Mises residual stresses in interlayer (Al99.5) and superlayer (AlMg4.5Mn) were negligible.


1972 ◽  
Vol 5 (3) ◽  
pp. 242-244
Author(s):  
A. N. Tynnyi ◽  
Z. A. Bazilevich ◽  
S. I. Mikitishin ◽  
Ya. I. Lavrentovich ◽  
G. V. Karpenko

Academia Open ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Khasanov Doston

The wide possibilities of modifying manufactured industrial fibers aimed at improving their physico-mechanical properties, structural and technological parameters. In connection with the above, it was of interest to study the effect of a number of water-soluble compositions based on a poly-quaternary salt of dimethyl-allyl-β - methacryloyloxyethylammonium bromide in combination with glycerin on the structural and physico-mechanical properties of protein fiber, and also to study the effect of the composition on wool spinning and the quality of wool yarn .


Author(s):  
Вячеслав Безъязычный ◽  
Vyacheslav Bezyazychnyy ◽  
Максим Басков ◽  
Maksim Baskov

The impact of cutter wear-resistant coatings upon cutting process parameters and characteristics of surface layer quality in the parts worked: residual stresses, a degree and a depth of work hardening of a surface layer, surface roughness is investigated.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Ahmet Aydın ◽  
Cemil Keskinoğlu ◽  
Umut Kökbaş ◽  
Abdullah Tuli

Ultrasound is used in many analysis studies, including liquid mixtures. Many mixtures are analyzed to understand their contents or properties in different situations. One of these mixtures is the ethanol-water combination. In this study, the amount of ethanol in the liquid mixture was determined noninvasively by the ultrasonic method using a microcontroller-based system. The results show that the measurements obtained were within the p<0.05 confidence interval. The characteristics evaluation of the system shows that the system can detect ethanol concentration as low as 0.552 g/L, thus the system has a broad and linear determination range for ethanol. Although the system is calibrated and tested with ethanol-water mixture, it can be used for any mixture that changes density related to the substance concentration, including different alcohols which are soluble in water (glycols, glycoethers, etc.) or any other material (solid or liquid) which is soluble in alcohol or different liquid solvent. The system has so many advantages that make it possible to use comfortably in many areas where the amount of ethanol contained in the mixture is essential. These advantages are the high accuracy and sensitivity, being noninvasive, portable, and not having a destructive effect on the substance.   Resumen. El ultrasonido es utilizado en muchos estudios incluyendo las mezclas liquidas. Se analizan varias mezclas para entender sus contenidos y propiedades en diferentes situaciones. Una de estas mezclas es la combinación de etanol-agua. En este estudio, la cantidad de etanol en la mezcla líquida fue determinada de manera no invasiva con el método ultrasonico utilizando un sistema basado en microcontrolador. Los resultados muestran que las mediciones obtenidas se encontraban dentro de un intervalo de confianza de p<0.05. Las características de evaluación del sistema muestran que se puede detectar etanol a una concentración tan baja como 0.552 g/L, por lo tanto, el sistema tiene un rango de determinación linear amplio para etanol. Aunque el sistema se calibra y prueba con mezcla de etanol-agua, puede ser utilizado para cualquier mezcla que cambia de densidad en relación con la concentración de la substancia, incluyendo diferentes alcoholes que son solubles en agua (glicoles, glicoeteres, etc) o cualquier otro material (sólido o líquido) que sea soluble en alcohol o en algún solvente líquido diferente. El sistema tiene muchas ventajas que hacen posible su utilización en muchas áreas donde la cantidad de etanol contenida en la mezcla es esencial. Estas ventajas son de alta precisión y sensiblididad al ser no invasivo, portátil y al no tener un efecto destructivo sobre la sustancia.


2014 ◽  
Vol 610 ◽  
pp. 1002-1020 ◽  
Author(s):  
Yuan Gao ◽  
Xin Huang ◽  
Ming Jie Lin ◽  
Zheng Guo Wang ◽  
Rong Lei Sun

Surface integrity is widely used for evaluating the quality of machined components. It has a set of various parameters which can be grouped as: (a) topography parameters such as surface roughness, textures and waviness (b) mechanical parameters such as residual stresses and hardness, and (c) metallurgical state such as microstructure, phase transformation, grain size and shape, inclusions etc. Surface roughness and residual stresses are among the most significant parameters of surface integrity, so that it is worth investigating them particularly. Many factors affect the surface integrity of machined components, including cutting parameters, tool parameters, material properties and vibrations. We can make prediction and optimization for surface integrity by taking advantage of these factors. This paper reviews previous studies and gives a comprehensive summary of surface integrity in the following order: introduction of surface integrity, main parameters of surface integrity, factors affecting surface integrity, prediction and optimization for surface integrity.


2016 ◽  
Vol 37 (2) ◽  
pp. 161-173 ◽  
Author(s):  
Jolanta B. Królczyk

Abstract Mixing of granular materials is unquestionably important. Mixing solids is common in industrial applications and frequently represents a critical stage of the processes. The effect of mixing determines the quality of the products. Achieving a gas or liquid mixture ideally homogeneous in terms of composition in the case of dissolving components is not that difficult, while in case of granular materials that usually differ in sizes and densities, obtaining a homogenous mixture is practically impossible. The aim of the paper is to present the kinetics of mixing of a multicomponent, nonhomogeneous granular mixture. For the first time in mixing of granular materials, a reference has been made to the terminology used in kinematics of fluid mixtures to determine the state of the mixture: turbulent or laminar. By means of statistical analysis the mixing process was divided into two stages. The initial phase of the process was called the stage of turbulent changes, due to large differences in the quality of the observed mixtures; the final step of the process was called the stage of laminar, stable changes, where further mixing did not result in a significant improvement in quality. The research was conducted in industrial conditions in a two-tonne mixer.


Author(s):  
Ali Gadelmoula ◽  
Khaled Al-Athel

Abstract Ceramic coatings are widely used in many engineering applications, especially applications related to components operating at elevated temperatures. One of the main issues relates to ceramic coatings is the development of residual stresses due to quenching and the thermal mismatch between the deposited coating layers and the substrate. In this work, a computational framework is developed to investigate the effect of various process parameters on the development of the residual stresses. The geometry of the coating layers and the interface roughness between the layers is first generated using SimCoat, a Monte Carlo based statistical algorithm that determines the effect of process parameters (droplet size, spraying speed, etc.) on the characteristics of the developed coating (coating thickness, porosity, etc.). An in-house code is used to convert the statistical data into a finite element (FE) model. Various FE models are generated with different process parameters, and the development of residual stresses is compared between them. The developed framework can be used by material scientists and engineers to predict the quality of the coating and optimize the process parameters to any specific application.


Sign in / Sign up

Export Citation Format

Share Document