scholarly journals Kajian Eksperimental Penggunaan Ruang Pengering Silinder Vertikal dan Horisontal Mesin Pengering Gabah Tipe Fluidzed Deep

2018 ◽  
Vol 2 (1) ◽  
pp. 53
Author(s):  
Mochammad Arvin Syarifuddin ◽  
La Ode M. Firman

Abstract— This study explored experimentally the use of vertical and horisontal position of cylindrical drying chamber dryer Fluidzed Deep against temperature distribution, humidity, drying rate, decreasing grain water level, and decreasing grain mass. The method used in this research is design and experiment. This machine uses a burning furnace as a heat source,sengon/ albasia wood as fuel, flat plate type heat exchanger, cyclone to convert wet vapor to dry vapor, filter to dry vapor cleaner, cylindrical drying chamber, blower to blow air, and Jig to support all components. This experiment was carried out three times for the drying chamber in a vertical position, and three times for the drying chamber in a horisontal position. In one drying time, it takes about 270 minutes. In the drying chamber measured temperature and humidity at 12 points of measurement. The results showed that the horisontal cylinder drying chamber produced higher temperature distribution than the vertical cylinder drying chamber, but the temperature distribution was less even, the vertical cylinder dryer produced lower humidity than the horisontal cylinder drying chamber, but resulted in higher deviation than the horisontal cylinder dryer. Drying rate, decrease in grain water content, average grain decrease on average faster than horisontal cylinder. The process of reducing the grain moisture content from about 20% bb to a moisture content of dry milled grains of about 14% bb occurred for 270 minutes or about 4, 5 hours. Keyword: Experimental design; Fluized deep dryer; dryer efficiency 

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
S. Syahrul ◽  
M. Mirmanto ◽  
S. Romdani ◽  
S. Sukmawaty

Grain processing does not meet the actual grain harvests. This is due to the unsuitable drying process. Milling grain entrepreneurs and farmers in Indonesia are currently conducting a drying process under the sun. Based on the National Standards Body (BSN), grain moisture content must be at 14% to maintain the grain at high qualities. The purpose of this study is to determine the effect of velocity and grain mass variations on drying times. The grain used in this study contains an initial moisture content of 22% ± 0.5%. The grain is dried by inserting it into the drying chamber and varying the air velocities and grain mass. The air velocities used are 4 m/s, 5 m/s, 6 m/s and the variations of the grain mass are 1 kg 2 kg and 3 kg. The results show that increasing the air velocity decreases the drying time. On the other hand, when the grain mass is increased, the drying time elevates. The air velocity and mass of the grain that results in the fastest drying time are 6 m/s and 2 kg. The time required for achieving the water content of 13.6% is 30 menit. At the air velocity of 4 m/s, and the grain masses of 1 kg, 2 kg, and 3 kg, to achieve moisture contents of 13.4%, 13.5% and 13.4% the drying time needs 50 minutes.


2013 ◽  
Vol 12 (1) ◽  
Author(s):  
Manuel A. Bajet, Jr.

Fish drying facility was designed, developed and tested to determine itsperformance, and characterization as a natural convection dryer for stunted tilapia.Parameters in the study were air temperature, relative humidity, drying chamber,moisture content, drying time, capacity and rate. Experimental research design wasused and materials includes, lumber painted in black and used as frames, plasticscreen mesh, cellophane, black plain sheet and stones.. Findings disclosed that dryingrate were noted at the highest during first two hours internal with an average dryingrate of 7.20 grams per minute. Average drying rate after the three trials was 2.63grams per minute. The moisture content of the samples was reduced from 92.68%-75.23% during the 20 hours of drying and weights of fish samples were also reducedfrom 20 to 15 kilograms. Further, results on relative humidity was higher at theupper trays compared that the lower trays. Return of investment was 72% and has apayback period of 0.05 year. Keywords: Renewable Energy, Project and Experimental Research, NaturalConvection Dryer, Vigan City, Ilocos Sur, Philippines


2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


2020 ◽  
Vol 4 (4) ◽  
pp. 512-521
Author(s):  
Durry Munawar ◽  
Dewi Sri Jayanti ◽  
Raida Agustina

Abstrak. Pemanfaatan kulit melinjo sebagai produk makanan olahan belum banyak diketahui oleh masyarakat. Biasanya kulit melinjo tidak dimanfaatkan lagi dan dibuang begitu saja padahal kulit melinjo dapat diolah kembali menjadi beberapa produk makanan seperti keripik kulit melinjo, manisan, teh, pewarna makanan. Penelitian ini bertujuan untuk mengetahui karakteristik pengeringan dan mutu dalam pembuatan keripik kulit melinjo dengan alat pengering tipe tray dryer pada suhu 35oC dan 45oC. Masing-masing suhu tersebut diulang sebanyak dua kali. Hasil penelitian menunjukkan bahwa pada suhu 35oC kelembaban udara yang diperoleh adalah 70,50% dengan lama pengeringan 390 menit (6,5 jam) dan rata-rata laju pengeringan sebesar 1,08 bk/menit, sedangkan pada suhu 45oC kelembaban udara yang diperoleh adalah 60,72% dengan lama pengeringan 300 menit (5 jam) dan rata-rata laju pengeringan sebesar 1,32 bk/menit. Kecepatan aliran udara ruang pengering pada suhu 35oC dan 45oC adalah konstan (2,4 m/s). Rata-rata kadar air awal kulit melinjo adalah 82,26% sedangkan kadar air akhir adalah 21,36%. Susut bobot pada suhu 35oC adalah 77,56% dan pada suhu 45oC adalah 77,32%. Hasil uji organoleptik terbaik adalah pada suhu 35oC dengan skor 4,28 untuk warna, 4,50 untuk aroma, 4,53 untuk rasa dan 4,40 untuk tekstur.Characteristic Melinjo Peel (Gnetum gnemon L) Drying with Tray Dryer for Making Melinjo Peel ChipsAbstract. The use of melinjo peel as a processed food product is not widely known in the public. Melinjo peel is usually no longer used and thrown away even though the peel could be reprocessed into several food products such as melinjo peel chips, confectionery, tea, and food coloring. This research aimed to determine the characteristics of drying and quality in the making of melinjo peel chips with tray dryer at 35oC and 45oC. Each temperature is repeated twice. The results showed that at a temperature of 35oC, the humidity was 70.50% with a drying time was 390 minutes (6.5 hours) and the average of drying rate was 1.08 dw/minute, meanwhile at 45oC the humidity was 60.72% with a drying time was 300 minutes (5 hours) and an average of drying rate was 1.32 dw/minute. The airflow velocity of the drying chamber at 35oC and 45oC was constant (2.4m/s). The average of initial moisture of melinjo peel was 82.26% and final moisture was 21.36%. The weight loss at 35oC was 77.56% and at 45oC was 77.32%. The best results of organoleptic test was at temperature 35oC with score 4.28 for color, 4.50 for flavor, 4.53 for taste and 4.40 for texture.


Author(s):  
Viktor Shvidia ◽  
◽  
Serhii Stepanenko ◽  

In the article, a drying scheme in a tower grain dryer has been developed, equations for the conservation of energy and material balance for grain, equations for mass transfer and heat transfer between the drying agent and grain have been drawn up. On their basis, analytical dependences of changes in the temperature and moisture content of grain, moisture content and temperature of the drying agent along and in the width of the drying channel were obtained, depending on the operating parameters (the value of rarefaction in the drying channel, the speed of grain movement along the drying channel, the speed of movement of the drying agent, the initial temperatures of the grain and drying agent, initial moisture content of grain, as well as initial moisture content of drying agent). Their analysis facilitates the work in choosing the optimal mode. The developed analytical dependences of changes in the main drying parameters (moisture and temperature of grain, moisture content and temperature of the drying agent) along the length and width of the drying channel in tower dryers with suction air flow make it possible to link the main operating parameters, which facilitate the choice of rational drying modes.


2016 ◽  
Vol 12 (6) ◽  
pp. 599-606 ◽  
Author(s):  
Flávia Daiana Montanuci ◽  
Raphaela Mulato Cavalcante ◽  
Camila Augusto Perussello ◽  
Luiz Mario de Matos Jorge

Abstract The study of process kinetics may aid the design and optimization of drying systems. This paper evaluated the influence of drying temperature (40, 60 and 80 °C) on the moisture content, drying rate, density, shrinkage and breakage of maize dried in two different dryers: oven and silo dryer. In both dryers, the temperature increase reduced drying time, final moisture content and shrinkage of the grains, however increased breakage. Drying rate was higher in the oven (6.4×10−4±2.3×10−4s−1 versus 5.4×10−4±1.2×10−4s−1), while shrinkage (15.2±4.7 % versus 24.4±5.6 %) and density increase (16.6±5.9 % versus 33.4±5.8 %) were more intense in the silo. There was a large release of husk in the silo dryer and the moisture content was slightly smaller in the lower layers respective to the upper ones.


2018 ◽  
Vol 1 (1) ◽  
pp. 020-027
Author(s):  
Dian Morfi Nasution ◽  
Himsar Ambarita ◽  
Farel H. Napitupulu

Tingginya kesibukan masyarakat saat ini memacu banyaknya usaha laundry yang menawarkan jasa pencucian dan pengeringan pakaian dengan waktu yang singkat. Dalam hal ini sangat dibutuhkan sistem pengeringan pakaian yang efisien dari segi waktu dan energi serta tidak bergantung kepada cuaca. Penelitian ini bertujuan melakukan optimasi pengering pakaian sistem pompa kalor dengan menambahkan sebuah alat penukar kalor tipe plat datar untuk mendapatkan karakteristik pengeringan pakaian dan kinerja mesin pengering. Alat penukar kalor plat datar ditempatkan di antara ruang pengering dan evaporator. Pengeringan dilakukan terhadap 4 jenis bahan pakaian yang berbeda pada setiap variasi kecepatan udara. Diperoleh temperatur udara pada ruang pengering 48,24⁰C dengan kelembaban 24,6%. Laju pengeringan tertinggi diperoleh pada pengeringan 4 bahan pakaian secara bersamaan yaitu 0,3529 kg/jam yang menghasilkan nilai SMER sebesar 1,4537 kg/kWh dan SEC sebesar 0,6879 kWh/kg. Total prestasi pengering diperoleh 6,40 dengan efektivitas penukar kalor 62,24%. Semakin tinggi jumlah kadar air dengan waktu pengeringan yang singkat akan meningkatkan laju pengeringan. Laju pengeringan yang tinggi dengan konsumsi energi yang rendah akan menghasilkan nilai SMER yang tinggi dan menghasilkan nilai SEC yang rendah.   The high level of public activity is currently spurring the many laundry businesses that offer laundry and drying services in a short time. In this case, it needs efficient drying system in time and energy and not depending on weather. This study aims to optimize the heat pump system in drying clothes by adding a flat plate type heat exchanger to obtain the drying characteristic of clothes and the performance of the drying machine. Flat plate heat exchanger was placed between the drying chamber and the evaporator. The drying process was carried out in 4 different types of clothing material in each variation of air velocity. Air temperature was obtained in drying chamber of 48.24 ⁰C with a humidity of 24.6%. The highest drying rate was obtained from drying 4 clothing materials simultaneously, namely 0.3529 kg/hour which resulted in an SMER value of 1.4537 kg/kWh and SEC of 0.6879 kWh/kg. The total dryer performance was obtained at 6.40 with the effectiveness of heat exchanger 62.24%. The higher the amount of water in short drying time would increase the drying rate. A high drying rate with low energy consumption would result in a high SMER value and produce a low SEC value.


2020 ◽  
Vol 13 (2) ◽  
pp. 1-13
Author(s):  
Hary Kurniawan ◽  
Kiki Rizqia Septiyana ◽  
Muhammad Adnand ◽  
Imam Adriansyah ◽  
Hasmi Nurkayanti

Abstrak. Gula semut merupakah salah satu penganekaragaman produk gula palma yang berbentuk butiran atau kristal yang bahan bakunya dapat berasal dari dari nira kelapa, nira aren atau nira siwalan. Salah satu tahapan penting dalam pembuatan gula semut yaitu pengeringan. Penelitian ini bertujuan untuk mempelajari karakeristik pengeringan gula semut menggunakan alat pengering tipe rak yang berbentuk silinder. Alat pengering yang digunakan menggunakan gas LPG sebagai sumber panas. Parameter yang diamati meliputi suhu lingkungan dan suhu bahan di rak atas, tengah dan bawah, suhu udara yang masuk ke ruang pengering (inlet) dan suhu yang meninggalkan ruang pengering (cerobong). Perubahan kadar air gula semut juga diukur setiap waktu. Hasil menunjukkan bahwa suhu udara pengering dan suhu bahan baik di rak atas, tengah dan bawah berbeda signifikan. Sementara itu perubahan kadar air di setiap rak juga menunjukkan hal yang sama yaitu ada perbedaan nyata perubahan kadar air pada rak. Konstanta laju pengeringan sebesar 0,0119 - 0.0212 menit-1. Berdasarkan nilai R2 yang 0,5 menunjukkan bahwa kadar air yang diprediksi mampu menggambarkan kondisi yang mendekati perubahan kadar air yang sesungguhnya selama pengeringan.Characteristics of Drying Gula Semut Using Cylinder Abstract. Gula semut is one of the diversified products of palm sugar in the form of granules or powders made from palm sap, coconut sap, or siwalan sap. Drying is one of the important processes in making gula semut. The purpose of this study was to study the characteristics of drying gula semut using a cylinder geometry of the cabinet dryer. The dryer used LPG gas as a heat source. The parameters observed are the ambient temperature and the temperature of the sample in the top, middle and bottom racks, the temperature of inlet, and chimney. Changes in the moisture content of gula semut are also measured every time. The results showed that the ambient temperature of the drying chamber and the temperature of samples both on the top, middle, and bottom shelves differ significantly. There was a real difference in changes in the water content in the rack. The drying rate constants are 0.0119 to 0.0212 minutes-1. Based on the R2 value 0.5, it showed that the predicted moisture content was able to describe conditions that are close to changes in the actual moisture content during drying.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2560
Author(s):  
Junhwi So ◽  
Sungyong Joe ◽  
Seonho Hwang ◽  
Soojin Jun ◽  
Seunghyun Lee

The main purpose of cold chain is to keep the temperature of products constant during transportation. The internal temperature of refrigerated truck body is mainly measured with a temperature sensor installed at the hottest point on the body. Hence, the measured temperature cannot represent the overall temperature values of transported products in the body. Moreover, the airflow pattern in the refrigerated body can vary depending on the arrangement of loaded logistics, resulting temperature differences between the transported products. In this study, the airflow and temperature change in the refrigerated body depending on the loading patterns of box were analyzed using experimental and numerical analysis methods. Ten different box loading patterns were applied to the body of 0.5 ton refrigerated truck. The temperatures inside boxes were measured depending on the loading patterns. CFD modeling with two different turbulence models (k-ε and SST k-ω) was developed using COMSOL Multiphysics for predicting the temperatures inside boxes loaded with different patterns, and the predicted data were compared to the experimental data. The k-ε turbulence model showed a higher temperature error than the SST k-ω model; however, the highest temperature point inside the boxes was almost accurately predicted. The developed model derived an approximate temperature distribution in the boxes loaded in the refrigerated body.


2020 ◽  
Vol 154 ◽  
pp. 01004
Author(s):  
Ewa Golisz ◽  
Małgorzata Jaros ◽  
Szymon Głowacki

The goal of the work was to propose and verify the model of temperature changes of the convective dried biomass depending on the drying time. The algebraic temperature model of the convective dried solid, giving the possibility of its direct calculation, was based on the logistic function of growth. Temperature model was verified for convective dried biomass: vegetable and wood (poplar and willow wood chips) significantly differing in initial moisture content. Parameter W in the temperature model, defined as the coefficient of temperature rate changes reaches greater values in higher temperature of drying air and for wood biomass which has lower initial moisture content. Empirically selected parameter W allows to verify the temperature model with the relative error less than 5%.


Sign in / Sign up

Export Citation Format

Share Document