scholarly journals NOx and CO Emission Analysis Using Oxygenated Fuels for a Diesel Engine Equipped with Diesel Particulate Filter

Author(s):  
Andrei-Constantin SOFIAN ◽  
Mădălin-Florin POPA ◽  
Bogdan Manolin JURCHIȘ

The automotive industry is responsible for a big part of the pollutant emissions, and the measures that are being taken to reduce these emissions are extremely important. Compared to 1990 emissions of nitrogen oxides from internal combustion engines decreased approximately by 39%, and for PM 2.5 by 37%. Even so, emissions concerns have increased in recent years, so the EU has taken a series of measures to continuously reduce emissions of nitrogen oxides and carbon monoxide related to transport sector. It is well known that the replacement, even partial, of fossil fuels with alternative fuels has a significant contribution to the decarbonisation of trans-European transport, which reduces the environmental impact of this sector. With a share of around 4.7% of all fuels used in EU transport, biofuels are the main type of alternative fuel. In addition, if produced sustainably, biofuels help reduce emissions of carbon monoxide and solid particles, but at certain operating intervals, the engine can produce more NOx emissions, which is why diesel engines must be equipped with additional NOx emission treatment systems.

2020 ◽  

<p>Air pollutant emissions and fuel consumption of vehicles equipped with internal combustion engines are highly susceptible to the conditions of engine operation. The purpose of this research was to investigate the correlation between the emissions of individual pollutants (carbon monoxide, hydrocarbons, nitrogen oxides, and carbon dioxide), the fuel consumption and various dynamic conditions of the operation of an engine. The empirical data was obtained by testing of passenger car with a spark-ignition engine on a chassis dynamometer in 12 various driving tests, both type-approval and special. The results indicate, that the strongest correlation exists between the emissions of carbon dioxide and hydrocarbons and between the fuel consumption and the emissions of hydrocarbons and carbon dioxide. The weakest correlation was found to be between the emissions of carbon monoxide and nitrogen oxides. The average value of vehicle velocity proved to be suitable zero-dimensional characteristic of the dynamic driving conditions. The correlation between the emission of hydrocarbons and the average vehicle velocity can be assessed as the strongest, while between the emission of nitrogen oxides and the average vehicle velocity – the weakest.</p>


2021 ◽  
pp. 146808742110139
Author(s):  
José Galindo ◽  
Vicente Dolz ◽  
Javier Monsalve-Serrano ◽  
Miguel Angel Bernal ◽  
Laurent Odillard

Internal combustion engines working at cold conditions lead to the production of excessive pollutant emissions levels. The use of the exhaust gas recirculation could be necessary to reduce the nitrogen oxides emissions, even at these conditions. This paper evaluates the impact of using the high-pressure exhaust gas recirculation strategy while the diesel particulate filter is under active regeneration mode on a Euro 6 turbocharged diesel engine running at low ambient temperature (−7°C). This strategy is evaluated under 40 h of operation, 20 of them using the two systems in combination. The results show that the activation of the high-pressure exhaust gas recirculation during the particulate filter regeneration process leads to a 50% nitrogen oxides emissions reduction with respect to a reference case without exhaust gas recirculation. Moreover, the modification of some engine parameters compared to the base calibration, as the exhaust gas recirculation rate, the main fuel injection timing and the post injection quantity, allows to optimize this strategy by reducing the carbon monoxide emissions up to 60%. Regarding the hydrocarbons emissions and fuel consumption, a small advantage could be observed using this strategy. However, the activation of the high-pressure exhaust gas recirculation at low temperatures can produce fouling deposits and condensation on the engine components (valve, cooler, intake manifold, etc.) and can contribute to reach saturation conditions on the particulate filter. For these reasons, the regeneration efficiency is followed during the experiments through the filter status, concluding that the use of low high-pressure exhaust gas recirculation rates in combination with the regeneration mode also allows to clean the soot particles of the particulate filter. These soot depositions are visualized and presented at the end of this work with a brief analysis of the soot characteristics and a quantitative estimation of the total soot volume produced during the experimental campaign.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1538
Author(s):  
Felipe Andrade Torres ◽  
Omid Doustdar ◽  
Jose Martin Herreros ◽  
Runzhao Li ◽  
Robert Poku ◽  
...  

The worldwide consumption of fossil hydrocarbons in the road transport sector in 2020 corresponded to roughly half of the overall consumption. However, biofuels have been discreetly contributing to mitigate gaseous emissions and participating in sustainable development, and thus leading to the extending of the commercial utilization of internal combustion engines. In this scenario, the present work aims at exploring the effects of alternative fuels containing a blend of 15% ethanol and 35% biodiesel with a 50% fossil diesel (E15D50B35) or 50% Fischer–Tropsch (F-T) diesel (E15FTD50B35) on the engine combustion, exhaust emissions (CO, HC, and NOx), particulate emissions characteristics as well as the performance of an aftertreatment system of a common rail diesel engine. It was found that one of the blends (E15FTD50B35) showed more than 30% reduction in PM concentration number, more than 25% reduction in mean particle size, and more than 85% reduction in total PM mass with respect to conventional diesel fuel. Additionally, it was found that the E15FTD50B35 blend reduces gaseous emissions of total hydrocarbons (THC) by more than 25% and NO by 3.8%. The oxidation catalyst was effective in carbonaceous emissions reduction, despite the catalyst light-off being slightly delayed in comparison to diesel fuel blends.


Models and mechanisms for the formation of soot and nitrogen oxides during the combustion of hydrocarbon fuels of power plants of vehicles have been developed. Models of numerical modeling and calculation of solid particles, nitrogen oxides and urea of diesel engines are formulated. The potential for the formation of a greenhouse effect is briefly described. The regularity of the relationship between nitrogen oxides and soot was revealed. A schematic diagram of the oxidizing neutralizer and particulate filter of modern diesel is given. The diagram of the urea supply system and the urea atomization module in the engine exhaust system is given. The scheme of the control system for catalytic neutralization of nitrogen oxides is given. A comparative assessment of nitric oxide reductants is given. An assessment of the technical and environmental effectiveness of the system for reducing the toxicity and smoke content of modern engines is given. Keywords greenhouse effect, smokiness, solid particles, urea, soot, diesel, acetylene, soot filter, catalytic Converter, nitrogen oxides, models for calculating soot and nitrogen oxides, urea supply module, control system


Author(s):  
Samiddha Palit ◽  
Bijan Kumar Mandal ◽  
Sudip Ghosh ◽  
Arup Jyoti Bhowal

Fast depletion of the conventional petroleum-based fossil fuel reserves and the detrimental effects of the pollutant emissions associated with the combustion of these fuels in internal combustion (IC) engines propelled the exploration and development of alternative fuels for internal combustion engines. Biodiesel has been identified as one of the most promising alternative fuels for IC engines. This paper discusses about the advantages and disadvantages of biodiesel vis-a-vis the conventional petro-diesel and presents the energetic performances and emission characteristics of CI engine using biodiesel and biodiesel-petrodiesel blends as fuels. An overview of the current research works carried out by several researchers has been presented in brief. A review of the performance analysis suggests that biodiesel and its blends with conventional diesel have comparable brake thermal efficiencies. The energy balance studies show that biodiesel returns more than 3 units of energy for each unit used in its production. However, the brake specific fuel consumption increases by about 9–14% compared to diesel fuel. But, considerable improvement in environmental performance is obtained using biodiesel. There is significant reduction in the emissions of unburned hydrocarbons, polyaromatic hydrocarbons (PAHs), soot, particulates, carbon monoxide, carbon dioxide and sulphur dioxide with biodiesel. But the NOx emission is more with biodiesel compared to diesel. A case study with Jatropha biodiesel as fuel and the current development status, both global and Indian, of biodiesel as a CI engine fuel have been included in the paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Mostofa Kamal Nasir ◽  
Rafidah Md Noor ◽  
M. A. Kalam ◽  
B. M. Masum

Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.


Author(s):  
Amirreza Talaiekhozani ◽  
Ali Mohammad Amani ◽  
Zeinab Eskandari ◽  
Reza Sanaye

Introduction: Although many studies on Isfahan’s air pollution have been done, there is no report about the effects of cigarette consumption in Isfahan. The aims of this study were (a) to find the amount of nitrogen oxides, hydrocarbons, carbon monoxide and carbon dioxide emitted by cigarette consumption in Isfahan; and (b) to model the distribution of such pollutants in Isfahan’s atmosphere. Materials and methods: Based on the literature, it is assumed that 15% of Isfahan’s people consume cigarettes and each smoker on average smokes 1,147 cigarettes per year. Based on these assumptions, the 249,000 smokers living in Isfahan consume 285,000,000 cigarettes per year. The amount of pollutant emissions was calculated by existing emission factors for cigarette consumption. Finally, the distribution of the emitted pollutants from cigarette consumption in Isfahan’s atmosphere was modeled using AERMOD. Results: The results illustrated that each year, 2.85 kg nitrogen oxides, 2.85 kg hydrocarbons, 37.05 kg carbon monoxide and 142.5 kg carbon dioxide are emitted into Isfahan’s atmosphere from residents’ smoking. The modeling of pollutants’ dispersion in Isfahan’s atmosphere showed that only some of these pollutants result from cigarette consumption. Conclusion: This study demonstrated that the amount of pollutants emitted by cigarette consumption was negligible compared to the other pollutant sources in Isfahan.


2017 ◽  
Vol 19 (4) ◽  
pp. 614-640

The problem of reducing CO2 emissions from transport, a major contributor to the greenhouse effect, has become a growing concern for the scientific community and various international committees monitoring climate change. Energy savings in the transport sector are a key factor towards rational management of oil reserves, while new trends in the automotive market have already been established, supported by research on efficient and environmentally-friendly technologies and alternative fuels to face fossil fuel dependency. The road transport sector is an important part for most developed economies but also a major source of pollutant emissions. In this framework, this paper focuses on transport emissions along the main road axis in Greece, connecting the country’s two largest urban areas, during the years 2008-2014, a period of prolonged recession. Based on traffic data collected at the toll stations along the highway, greenhouse gas and pollutant emissions were calculated using the COPERT4 emission estimation tool. According to the results, a sharp fall in emissions is observed largely due to traffic volume reductions, but also due to a prevailing trend for larger displacement vehicles and technologically improved vehicles with better environmental standards.


2020 ◽  
Vol 10 (16) ◽  
pp. 5707
Author(s):  
Matteo Dodero ◽  
Serena Bertagna ◽  
Alberto Marino’ ◽  
Vittorio Bucci

Currently, most ships use internal combustion engines (ICEs) either as propulsion engines or generator sets. The growing concern in environmental protection along with the consequent international rule framework motivated shipowners and designers to replace conventional power systems in order to mitigate pollutant emissions. Therefore, manufacturers have made available on the market many technological solutions to use alternative fuels (Liquefied Natural Gas or LNG, methanol, etc.). However, the main energy source is still fossil fuel, so almost all the ICEs are made up of turbocharged diesel engines (TDEs). TDEs have still the potential to improve their efficiency and reduce fuel consumption and pollutant emissions. In particular, the interpretation of Industry 4.0 given by manufacturers enabled the installation of a robust network of sensors on TDEs, which is able to allow reliable power management systems and make ships much more efficient regarding operating costs (fuel consumption and maintenance) and environmental footprint. In this paper, a software tool that is capable of processing the in-live performance of TDEs is described. The great novelty consists in the ability to process all the information detected by the sensor network in-live and dynamically optimize TDEs’ operation, whereas the common practice involves the collection of performance data and their off-line processing.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 945
Author(s):  
M. Pilar Orihuela ◽  
Onoufrios Haralampous ◽  
Ricardo Chacartegui ◽  
Miguel Torres García ◽  
Julián Martínez-Fernández

To meet the increasingly strict emission limits imposed by regulations, internal combustion engines for transport applications require the urgent development of novel emission abatement systems. The introduction of biodiesel or other biofuels in the engine operation is considered to reduce greenhouse gas emissions. However, these alternative fuels can affect the performance of the post-combustion systems due to the variability they introduce in the exhaust particle distribution and their particular physical properties. Bioceramic materials made from vegetal waste are characterized by having an orthotropic hierarchical microstructure, which can be tailored in some way to optimize the filtration mechanisms as a function of the particle distribution of the combustion gases. Consequently, they can be good candidates to cope with the variability that new biofuel blends introduce in the engine operation. The objective of this work is to predict the filtration performance of a wall-flow particulate filter (DPF) made of biomorphic silicon carbide (bioSiC) with a systematic procedure that allows to eventually fit different fuel inputs. For this purpose; a well-validated DPF model available as commercial software has been chosen and adapted to the specific microstructural features of bioSiC. Fitting the specific filtration and permeability parameters of this biomaterial into the model; the filtration efficiency and pressure drop of the filter are predicted with sufficient accuracy during the loading test. The results obtained through this study show the potential of this novel DPF substrate; the material/microstructural design of which can be adapted through the selection of an optimum precursor.


Sign in / Sign up

Export Citation Format

Share Document