scholarly journals Age-specific involutive characteristics of cognitive functions

2019 ◽  
Vol 4 (2) ◽  
pp. 21-26
Author(s):  
Simerzin VV ◽  
Fatenkov OV ◽  
Panisheva YaA ◽  
Galkina MA ◽  
Gagloev AV

The review article reflects the specific features of involutive cognitive functions in elderly people. Furthermore the basis of these changes is the natural physiological process of morphofunctional remodeling of the human body in general and of the central nervous system in particular. As a result, the elderly and senium people have cognitive decline, and in the presence of provoking medical and social factors and comorbid diseases they may have transient cognitive dysfunction.

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1831
Author(s):  
Camilla Russo ◽  
Carmela Russo ◽  
Daniele Cascone ◽  
Federica Mazio ◽  
Claudia Santoro ◽  
...  

Neurofibromatosis type 1 (NF1), the most frequent phakomatosis and one of the most common inherited tumor predisposition syndromes, is characterized by several manifestations that pervasively involve central and peripheral nervous system structures. The disorder is due to mutations in the NF1 gene, which encodes for the ubiquitous tumor suppressor protein neurofibromin; neurofibromin is highly expressed in neural crest derived tissues, where it plays a crucial role in regulating cell proliferation, differentiation, and structural organization. This review article aims to provide an overview on NF1 non-neoplastic manifestations of neuroradiological interest, involving both the central nervous system and spine. We also briefly review the most recent MRI functional findings in NF1.


Author(s):  
Elias Manca

AbstractSystemic lupus erythematosus is a complex immunological disease where both environmental factors and genetic predisposition lead to the dysregulation of important immune mechanisms. Eventually, the combination of these factors leads to the production of self-reactive antibodies that can target any organ or tissue of the human body. Autoantibodies can form immune complexes responsible for both the organ damage and the most severe complications. Involvement of the central nervous system defines a subcategory of the disease, generally known with the denomination of neuropsychiatric systemic lupus erythematosus. Neuropsychiatric symptoms can range from relatively mild manifestations, such as headache, to more severe complications, such as psychosis. The evaluation of the presence of the autoantibodies in the serum of these patients is the most helpful diagnostic tool for the assessment of the disease. The scientific progresses achieved in the last decades helped researchers and physicians to discover some of autoepitopes targeted by the autoantibodies, although the majority of them have not been identified yet. Additionally, the central nervous system is full of epitopes that cannot be found elsewhere in the human body, for this reason, autoantibodies that selectively target these epitopes might be used for the differential diagnosis between patients with and without the neuropsychiatric symptoms. In this review, the most relevant data is reported with regard to mechanisms implicated in the production of autoantibodies and the most important autoantibodies found among patients with systemic lupus erythematosus with and without the neuropsychiatric manifestations.


Author(s):  
Audrey Rousseaud ◽  
Stephanie Moriceau ◽  
Mariana Ramos-Brossier ◽  
Franck Oury

AbstractReciprocal relationships between organs are essential to maintain whole body homeostasis. An exciting interplay between two apparently unrelated organs, the bone and the brain, has emerged recently. Indeed, it is now well established that the brain is a powerful regulator of skeletal homeostasis via a complex network of numerous players and pathways. In turn, bone via a bone-derived molecule, osteocalcin, appears as an important factor influencing the central nervous system by regulating brain development and several cognitive functions. In this paper we will discuss this complex and intimate relationship, as well as several pathologic conditions that may reinforce their potential interdependence.


The Analyst ◽  
2020 ◽  
Vol 145 (22) ◽  
pp. 7380-7387 ◽  
Author(s):  
Huming Yan ◽  
Fangjun Huo ◽  
Yongkang Yue ◽  
Jianbin Chao ◽  
Caixia Yin

The excellent water solubility of hydrazine (N2H4) allows it to easily invade the human body through the skin and respiratory tract, thereby damaging human organs and the central nervous system.


2020 ◽  
Vol 21 (6) ◽  
pp. 2010 ◽  
Author(s):  
Maria Rosaria Rizzo ◽  
Renata Fasano ◽  
Giuseppe Paolisso

Adiponectin (ADPN) is a plasma protein secreted by adipose tissue showing pleiotropic effects with anti-diabetic, anti-atherogenic, and anti-inflammatory properties. Initially, it was thought that the main role was only the metabolism control. Later, ADPN receptors were also found in the central nervous system (CNS). In fact, the receptors AdipoR1 and AdipoR2 are expressed in various areas of the brain, including the hypothalamus, hippocampus, and cortex. While AdipoR1 regulates insulin sensitivity through the activation of the AMP-activated protein kinase (AMPK) pathway, AdipoR2 stimulates the neural plasticity through the activation of the peroxisome proliferator-activated receptor alpha (PPARα) pathway that inhibits inflammation and oxidative stress. Overall, based on its central and peripheral actions, ADPN appears to have neuroprotective effects by reducing inflammatory markers, such as C-reactive protein (PCR), interleukin 6 (IL6), and Tumor Necrosis Factor a (TNFa). Conversely, high levels of inflammatory cascade factors appear to inhibit the production of ADPN, suggesting bidirectional modulation. In addition, ADPN appears to have insulin-sensitizing action. It is known that a reduction in insulin signaling is associated with cognitive impairment. Based on this, it is of great interest to investigate the mechanism of restoration of the insulin signal in the brain as an action of ADPN, because it is useful for testing a possible pharmacological treatment for the improvement of cognitive decline. Anyway, if ADPN regulates neuronal functioning and cognitive performances by the glycemic metabolic system remains poorly explored. Moreover, although the mechanism is still unclear, women compared to men have a doubled risk of developing cognitive decline. Several studies have also supported that during the menopausal transition, the estrogen reduction can adversely affect the brain, in particular, verbal memory and verbal fluency. During the postmenopausal period, in obese and insulin-resistant individuals, ADPN serum levels are significantly reduced. Our recent study has evaluated the relationship between plasma ADPN levels and cognitive performances in menopausal women. Thus, the aim of this review is to summarize both the mechanisms and the effects of ADPN in the central nervous system and the relationship between plasma ADPN levels and cognitive performances, also in menopausal women.


2017 ◽  
Vol 6 (1) ◽  
pp. 48-62
Author(s):  
D. Bereskin

The experience of a work with a group of children with enuresis (six patients) and encopresis (one patient) both of residual-organic origin is analyzed in this article. Work included psychological diagnostic techniques and psychological correction. Psychological diagnostic evaluation was directed to the measurements of different characteristics of sensorimotor reactions, memory, attention and cognitive functions. Functional characteristics of the central nervous system in children with enuresis and encopresis were approximated to those recorded in their healthy peers, while the cognitive functions in present group of children were lower. Psychological correction has included neuropsychological methods, which were aimed at the development of: visual-motor coordination, spatio-temporal organization relations and logic constructions understanding. Based on children's and parent's self-reports and based on medical records also it can be assumed that proposed psychological correction can be effective in enuresis and encopresis in children with similar characteristics, which can be observed. The significance of the functional indices evaluation of the central nervous system by measuring various characteristics of sensorimotor reactions substantiate by results obtained.


2021 ◽  
Author(s):  
Carl Nikolaus Homann

The nervous system is the most complex organ in the human body, and it is the most essential. However nerve cells are particularly precious as, only like muscle cells, once formed, they do not replicate. This means that neural injuries cannot easily be replaced or repaired. Vitamin D seems to play a pivotal role in protecting these vulnerable and most important structures, but exactly how and to what extend is still subject to debate. Systematically reviewing the vast body of research on the influence of Vitamin D in various neuropathological processes, we found that Vitamin D particularly plays a mitigating role in the development of chronic neurodegeneration and the measured response to acutely acquired traumatic and non-traumatic nerve cells incidents. Adequate serum levels of Vitamin D before the initiation of these processes is increasingly viewed as being neuroprotective. However, comprehensive data on using it as a treatment during the ongoing process or after the injury to neurons is completed are much more ambiguous. A recommendation for testing and supplementation of insufficiencies seems to be well-founded.


1993 ◽  
Vol 8 (6) ◽  
pp. 285-291 ◽  
Author(s):  
M Bourin ◽  
A Couetoux du Tertre ◽  
R Payeur

SummaryAs with other drugs it is necessary to look for changes induced by anxiolytics on vital signs, laboratory parameters and adverse events. In return, in a more specific way for anxiolytics, we will look at side effects at the central nervous system level with psychological and physiological battery tests. We will also assess the safety of use of anxiolytics in certain specific conditions, such as overdose or withdrawal and in certain populations such as the elderly, neonates and children. The assessment of safety and side effects, whatever the drug type studied, must come early in the developing process of a drug (phases I, II and III).


1998 ◽  
Vol 8 (1) ◽  
pp. 31-43
Author(s):  
Linda M Luxon

The cochleovestibular system is unique in that the peripheral labyrinth subserves two senses, hearing and balance, while the central auditory and vestibular connections diverge within the central nervous system and interact with a multiplicity of information from other sensory inputs. During the seventh decade of life, approximately 40% of people in Great Britain have a significant hearing impairment while in the eighth decade of life this figure rises to 60%. By the age of 65, 35% of people have experienced episodes of dizziness and by the age of 80, two-thirds of women and one-third of men have suffered episodes of vertigo. The elderly population is reported to be increasing by approximately 30% every 20 years and the prevalence of vertigo and hearing loss has been reported to rise in parallel with advancing age.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Rahmita Wirza ◽  
Shah Nazir ◽  
Habib Ullah Khan ◽  
Iván García-Magariño ◽  
Rohul Amin

The medical system is facing the transformations with augmentation in the use of medical information systems, electronic records, smart, wearable devices, and handheld. The central nervous system function is to control the activities of the mind and the human body. Modern speedy development in medical and computational growth in the field of the central nervous system enables practitioners and researchers to extract and visualize insight from these systems. The function of augmented reality is to incorporate virtual and real objects, interactively running in a real-time and real environment. The role of augmented reality in the central nervous system becomes a thought-provoking task. Gesture interaction approach-based augmented reality in the central nervous system has enormous impending for reducing the care cost, quality refining of care, and waste and error reducing. To make this process smooth, it would be effective to present a comprehensive study report of the available state-of-the-art-work for enabling doctors and practitioners to easily use it in the decision making process. This comprehensive study will finally summarise the outputs of the published materials associate to gesture interaction-based augmented reality approach in the central nervous system. This research uses the protocol of systematic literature which systematically collects, analyses, and derives facts from the collected papers. The data collected range from the published materials for 10 years. 78 papers were selected and included papers based on the predefined inclusion, exclusion, and quality criteria. The study supports to identify the studies related to augmented reality in the nervous system, application of augmented reality in the nervous system, technique of augmented reality in the nervous system, and the gesture interaction approaches in the nervous system. The derivations from the studies show that there is certain amount of rise-up in yearly wise articles, and numerous studies exist, related to augmented reality and gestures interaction approaches to different systems of the human body, specifically to the nervous system. This research organises and summarises the existing associated work, which is in the form of published materials, and are related to augmented reality. This research will help the practitioners and researchers to sight most of the existing studies subjected to augmented reality-based gestures interaction approaches for the nervous system and then can eventually be followed as support in future for complex anatomy learning.


Sign in / Sign up

Export Citation Format

Share Document