scholarly journals Formalization of employee motivation model and assessment of its effectiveness

Author(s):  
Nadiia Khorunzhak

The subject matter of the research paper refers to theoretical and methodological principles of the practical performance of incentive function of payment for work. It is stressed that due to increasing competition and a shortage of highly skilled workers in a market economy, motivational tools constitute the basis for attracting skilled workforce to entities. Theoretical underpinning and practical proposals for developing an effective employee motivation model are urgent and important for personnel administration. The purpose of the article is to formalize an employee motivation model, which meets managerial and personalized needs, to describe its elements and assess effectiveness. The main objectives of the research paper refer to developing methods for constructing a formalized employee motivation model, and describing its constituent elements. The research and its results are based on the use of general scientific and special methods. The systemic approach enables to develop a concept for assessing the effectiveness of incentive function of remuneration, based on generalization, empirical estimates, analysis, evaluation, and formalization of factors that enhance employee motivation and can be obtained through questionnaires. As a result of using a wide range of material and research methods, a basic framework and a possible motivation model are developed and approaches to its assessment are proposed. Applying the classic approach to positioning effectiveness and its essential characteristics was the starting point. It is concluded that payment (salary / wages) is the key indicator for an employee motivation model and employee income model. Based on the views of various scholars and data obtained from questionnaires (including those available on the Internet), the main motivational factors are determined and an improved employee motivation model is proposed. According to the determined factors, a formalized mathematical model of motivation is developed, which makes it possible to take into account a degree of impact of each indicator on the resulting indicator (general motivation). Supplementing the proposed model with income indicators (by corresponding constituents), allowances and bonuses authorized by the existing legislation makes it possible to develop a generalized and formalized mathematical model for assessing employee motivation. The model can be used for carrying out comparative and predictive analysis, and choosing an algorithm for practical implementation of measures aimed at increasing employee motivation at an enterprise. The developed model also enables to take into account statistical, financial-economic and forecasting indicators for the identification of motivational purposes. For practical implementation of the developed model in a computerized environment, a structural scheme of its functioning is proposed; indicators and algorithms for calculation as well as necessary program modules are described.

2019 ◽  
Vol 26 (9) ◽  
pp. 66-84
Author(s):  
B. T. Ryabushkin ◽  
V. N. Korobov

This scientific and information review provides insight into the contents and nature of some questions and matters of national statistics as noted in the reports of statisticians - academics and practitioners at the meeting of Statistics Section of the Central House of Scientists of the Russian Academy of Sciences (CDU RAS) in 2018-2019. The Section covered a wide range of topics which could be grouped (although this grouping is somewhat relative) into three focus areas in modern Russian statistics discussed in the 2018-2019 season at the Central House of Scientists: I. Theoretical and practical aspects associated with conducting statistical observations, II. Development issues of macroeconomic statistics and III. Application of international statistical standards to Russian conditions.In these respective areas, debates focused on the results of the 2016 Russian Census of agriculture, optimization of the organizational structure of the 2020 Russian Population Census based on the results of the 2018 Pilot Population Census, fundamental principles of consumer price monitoring and calculating the consumer price index in today’s Russian statistics. Topics of methodological support of statistics on non-financial economic assets, improving the quality of GDP estimates based on the development of annual supply and use tables, the subject matter of innovation statistics triggered heated discussions amongst the practitioners and theoreticians who participated actively in the meetings. Finally, the Section reviewed matters of adopting international statistical standards to suit Russian conditions, in particular, the practical implementation of the Resolution concerning statistics of work, employment, and labor underutilization and Russian issues of international banking statistics.


2019 ◽  
pp. 40-46 ◽  
Author(s):  
V.V. Savchenko ◽  
A.V. Savchenko

We consider the task of automated quality control of sound recordings containing voice samples of individuals. It is shown that in this task the most acute is the small sample size. In order to overcome this problem, we propose the novel method of acoustic measurements based on relative stability of the pitch frequency within a voice sample of short duration. An example of its practical implementation using aninter-periodic accumulation of a speech signal is considered. An experimental study with specially developed software provides statistical estimates of the effectiveness of the proposed method in noisy environments. It is shown that this method rejects the audio recording as unsuitable for a voice biometric identification with a probability of 0,95 or more for a signal to noise ratio below 15 dB. The obtained results are intended for use in the development of new and modifying existing systems of collecting and automated quality control of biometric personal data. The article is intended for a wide range of specialists in the field of acoustic measurements and digital processing of speech signals, as well as for practitioners who organize the work of authorized organizations in preparing for registration samples of biometric personal data.


2020 ◽  
Author(s):  
Eleonora Diamanti ◽  
Inda Setyawati ◽  
Spyridon Bousis ◽  
leticia mojas ◽  
lotteke Swier ◽  
...  

Here, we report on the virtual screening, design, synthesis and structure–activity relationships (SARs) of the first class of selective, antibacterial agents against the energy-coupling factor (ECF) transporters. The ECF transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. Because of their central role in the metabolism of bacteria and their absence in humans, ECF transporters are novel potential antimicrobial targets to tackle infection. The hit compound’s metabolic and plasma stability, the potency (20, MIC Streptococcus pneumoniae = 2 µg/mL), the absence of cytotoxicity and a lack of resistance development under the conditions tested here suggest that this scaffold may represent a promising starting point for the development of novel antimicrobial agents with an unprecedented mechanism of action.<br>


2021 ◽  
Vol 13 (3) ◽  
pp. 1589
Author(s):  
Juan Sánchez-Fernández ◽  
Luis-Alberto Casado-Aranda ◽  
Ana-Belén Bastidas-Manzano

The limitations of self-report techniques (i.e., questionnaires or surveys) in measuring consumer response to advertising stimuli have necessitated more objective and accurate tools from the fields of neuroscience and psychology for the study of consumer behavior, resulting in the creation of consumer neuroscience. This recent marketing sub-field stems from a wide range of disciplines and applies multiple types of techniques to diverse advertising subdomains (e.g., advertising constructs, media elements, or prediction strategies). Due to its complex nature and continuous growth, this area of research calls for a clear understanding of its evolution, current scope, and potential domains in the field of advertising. Thus, this current research is among the first to apply a bibliometric approach to clarify the main research streams analyzing advertising persuasion using neuroimaging. Particularly, this paper combines a comprehensive review with performance analysis tools of 203 papers published between 1986 and 2019 in outlets indexed by the ISI Web of Science database. Our findings describe the research tools, journals, and themes that are worth considering in future research. The current study also provides an agenda for future research and therefore constitutes a starting point for advertising academics and professionals intending to use neuroimaging techniques.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3715
Author(s):  
Ioan Ungurean ◽  
Nicoleta Cristina Gaitan

In the design and development process of fog computing solutions for the Industrial Internet of Things (IIoT), we need to take into consideration the characteristics of the industrial environment that must be met. These include low latency, predictability, response time, and operating with hard real-time compiling. A starting point may be the reference fog architecture released by the OpenFog Consortium (now part of the Industrial Internet Consortium), but it has a high abstraction level and does not define how to integrate the fieldbuses and devices into the fog system. Therefore, the biggest challenges in the design and implementation of fog solutions for IIoT is the diversity of fieldbuses and devices used in the industrial field and ensuring compliance with all constraints in terms of real-time compiling, low latency, and predictability. Thus, this paper proposes a solution for a fog node that addresses these issues and integrates industrial fieldbuses. For practical implementation, there are specialized systems on chips (SoCs) that provides support for real-time communication with the fieldbuses through specialized coprocessors and peripherals. In this paper, we describe the implementation of the fog node on a system based on Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC.


2021 ◽  
Vol 11 (2) ◽  
pp. 787
Author(s):  
Bartłomiej Ambrożkiewicz ◽  
Grzegorz Litak ◽  
Anthimos Georgiadis ◽  
Nicolas Meier ◽  
Alexander Gassner

Often the input values used in mathematical models for rolling bearings are in a wide range, i.e., very small values of deformation and damping are confronted with big values of stiffness in the governing equations, which leads to miscalculations. This paper presents a two degrees of freedom (2-DOF) dimensionless mathematical model for ball bearings describing a procedure, which helps to scale the problem and reveal the relationships between dimensionless terms and their influence on the system’s response. The derived mathematical model considers nonlinear features as stiffness, damping, and radial internal clearance referring to the Hertzian contact theory. Further, important features are also taken into account including an external load, the eccentricity of the shaft-bearing system, and shape errors on the raceway investigating variable dynamics of the ball bearing. Analysis of obtained responses with Fast Fourier Transform, phase plots, orbit plots, and recurrences provide a rich source of information about the dynamics of the system and it helped to find the transition between the periodic and chaotic response and how it affects the topology of RPs and recurrence quantificators.


2019 ◽  
Vol 35 (8) ◽  
pp. 879-915 ◽  
Author(s):  
Bona Lu ◽  
Yan Niu ◽  
Feiguo Chen ◽  
Nouman Ahmad ◽  
Wei Wang ◽  
...  

Abstract Gas-solid fluidization is intrinsically dynamic and manifests mesoscale structures spanning a wide range of length and timescales. When involved with reactions, more complex phenomena emerge and thus pose bigger challenges for modeling. As the mesoscale is critical to understand multiphase reactive flows, which the conventional two-fluid model without mesoscale modeling may be inadequate to resolve even using extremely fine grids, this review attempts to demonstrate that the energy-minimization multiscale (EMMS) model could be a starting point to develop such mesoscale modeling. Then, the EMMS-based mesoscale modeling with emphasis on formulation of drag coefficients for different fluidization regimes, modification of mass transfer coefficient, and other extensions are discussed in an attempt to resolve the emerging challenges. Its applications with examples of development of novel fluid catalytic cracking and methanol-to-olefins processes prove that the mesoscale modeling plays a remarkable role in improving the predictions in hydrodynamic behaviors and overall reaction rate. However, the product content primarily depends on the chemical kinetic model itself, suggesting the necessity of an effective coupling between chemical kinetics and flow characteristics. The mesoscale modeling can be believed to accelerate the traditional experimental-based scale-up process with much lower cost in the future.


2002 ◽  
Vol 11 (3) ◽  
pp. 096369350201100
Author(s):  
E.M. Gravel ◽  
T.D. Papathanasiou

Dual porosity fibrous media are important in a number of applications, ranging from bioreactor design and transport in living systems to composites manufacturing. In the present study we are concerned with the development of predictive models for the hydraulic permeability ( Kp) of various arrays of fibre bundles. For this we carry out extensive computations for viscous flow through arrays of fibre bundles using the Boundary Element Method (BEM) implemented on a multi-processor computer. Up to 350 individual filaments, arranged in square or hexagonal packing within bundles, which are also arranged in square of hexagonal packing, are included in each simulation. These are simple but not trivial models for fibrous preforms used in composites manufacturing – dual porosity systems characterised by different inter- and intra-tow porosities. The way these porosities affect the hydraulic permeability of such media is currently unknown and is elucidated through our simulations. Following numerical solution of the governing equations, ( Kp) is calculated from the computed flowrate through Darcy's law and is expressed as function of the inter- and intra-tow porosities (φ, φt) and of the filament radius ( Rf). Numerical results are also compared to analytical models. The latter form the starting point in the development of a dimensionless correlation for the permeability of such dual porosity media. It is found that the numerically computed permeabilities follow that correlation for a wide range of φ i, φt and Rf.


Author(s):  
Chenyu Zhou ◽  
Liangyao Yu ◽  
Yong Li ◽  
Jian Song

Accurate estimation of sideslip angle is essential for vehicle stability control. For commercial vehicles, the estimation of sideslip angle is challenging due to severe load transfer and tire nonlinearity. This paper presents a robust sideslip angle observer of commercial vehicles based on identification of tire cornering stiffness. Since tire cornering stiffness of commercial vehicles is greatly affected by tire force and road adhesion coefficient, it cannot be treated as a constant. To estimate the cornering stiffness in real time, the neural network model constructed by Levenberg-Marquardt backpropagation (LMBP) algorithm is employed. LMBP is a fast convergent supervised learning algorithm, which combines the steepest descent method and gauss-newton method, and is widely used in system parameter estimation. LMBP does not rely on the mathematical model of the actual system when building the neural network. Therefore, when the mathematical model is difficult to establish, LMBP can play a very good role. Considering the complexity of tire modeling, this study adopted LMBP algorithm to estimate tire cornering stiffness, which have simplified the tire model and improved the estimation accuracy. Combined with neural network, A time-varying Kalman filter (TVKF) is designed to observe the sideslip angle of commercial vehicles. To validate the feasibility of the proposed estimation algorithm, multiple driving maneuvers under different road surface friction have been carried out. The test results show that the proposed method has better accuracy than the existing algorithm, and it’s robust over a wide range of driving conditions.


2021 ◽  
Author(s):  
Farhan Ali ◽  

Thinking creatively, is a necessary condition of the Design process to transform ideas into novel solutions and break barriers to creativity. Although, there are many techniques and ways to stimulate creative thinking for designers, however, this research paper adopts SCAMPER; which is acronym of: Substitute- Combine-Adapt- Modify or Magnify-Put to another use-Eliminate-Reverse or Rearrange- to integrate the sustainability concepts within architectural design process. Many creative artifacts have been designed consciously or unconsciously adopting SCAMPER strategies such as rehabilitation and reuse projects to improve the functional performance or the aesthetic sense of an existing building for the better. SCAMPER is recognized as a divergent thinking tool are used during the initial ideation stage, aims to leave the usual way of thinking to generate a wide range of new ideas that will lead to new insights, original ideas, and creative solutions to problems. The research focuses on applying this method in the architectural design, which is rarely researched, through reviewing seven examples that have been designed consciously or unconsciously adopting SCAMPER mnemonic techniques. The paper aims to establish a starting point for further research to deepen it and study its potentials in solving architectural design problems.


Sign in / Sign up

Export Citation Format

Share Document