scholarly journals Optimization of Biodiesel Transesterification using ANN and Fuzzy Logic

The high energy demand in domestic sector coupled with pollution brought by extensive exploitation of conventional fuels in an industrialized world makes it mandatory to boost renewable energy sources having lesser environmental impact than non-renewable ones. In this regard bio-diesel can be considered as a more reliable resource of energy that can be used readily in the existing engines. Biodiesel is formed by transesterification reaction of alcohol and triglycerides under a catalyst. In this paper, Bio-diesel is produced from karanja (pongamia pinnata) oil in sono reactor at varied methanol-oil ratios and varied catalyst ratios. Yield was found at different molar ratios of methanol:oil (6:1; 4.5:1; 3:1), different KOH concentrations (2.0 wt %; 1.5 wt %; 1.0 wt %) and different times (15 min; 30 min; 45 min; 60 min). The biodiesel thus obtained conformed to ASTM D6751 standards. The optimum conditions of maximum yield are determined at 50o C temperature, 45 min reaction time, 4.5:1 methanol:oil ratio and 1.5% of KOH. The results obtained are well in accord with the literature. Also ultrasonic vibration used for production of biodiesel proves to be promising technique. The biodiesel thus produced is analyzed using various tests to obtain its properties. Further optimization techniques namely Artificial Neural Network and Fuzzy Logic have been applied for modeling the reaction and finding the optimum yield at different conditions. The yield predicted by using ANN and Fuzzy logic was compared with the experimental yield. The ANN and Fuzzy can precisely calculate as per the experimental data with R2 = 0.998 and R2 = 0.995, respectively.

2006 ◽  
Vol 17 (4) ◽  
pp. 4-18 ◽  
Author(s):  
N Musee ◽  
L Lorenzen ◽  
C Aldrich

The current trend associated with high energy demand, depletion of energy reserves and low potential of renewable energy sources linked with strong industrial growth, is increasingly becoming unsustainable. As a result, production costs have increased considerably in the process industries, mainly owing to skewed energy demand and supply realities. A feasible strategy for meeting these challenges is to reduce energy consumption per unit throughput. However, to obtain a workable solution, decision makers may have to deal with energy management variables that are ambiguous, which makes solving the energy minimization problem with conventional numerical approaches very difficult. In this paper, we consider an alternative approach based on fuzzy logic to qualitatively evaluate the energy demand associated with an industrial cooling process. The model was formulated based on Mamdani fuzzy logic inferencing and implemented in MATLAB 6.5 via the Fuzzy Logic toolbox. The energy demands pertaining to specific variables were independently estimated, followed by an estimate of the overall energy consumption. The procedure is demonstrated via a case study of cooling at the maceration stage of a vinification process in the wine industry.


2017 ◽  
Vol 9 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Maryam Hamlehdar ◽  
Alireza Aslani

Abstract Today, the fossil fuels have dominant share of energy supply in order to respond to the high energy demand in the world. Norway is one of the countries with rich sources of fossil fuels and renewable energy sources. The current work is to investigate on the status of energy demand in Norway. First, energy and electricity consumption in various sectors, including industrial, residential are calculated. Then, energy demand in Norway is forecasted by using available tools. After that, the relationship between energy consumption in Norway with Basic economics parameters such as GDP, population and industry growth rate has determined by using linear regression model. Finally, the regression result shows a low correlation between variables.


2016 ◽  
Vol 22 (4) ◽  
pp. 271 ◽  
Author(s):  
Jaroslav Jerz ◽  
František Simančík ◽  
Jaroslav Kováčik ◽  
Peter Oslanec Sr.

The high energy efficiency of buildings can be achieved if energy needs are almost entirely covered by the supply of renewable energy sources obtained directly on the building or in its immediate vicinity. The technology providing efficient storage of the heat at a time of excessive sunlight is necessary if a returns of investment for the construction of small houses with zero energy balance should be less than 10 years. The regular alternation of day and night cycle resulting in continuously changing amount of sunshine falling on the building roof causes even though a small but very well usable potential. The concept presented in this contribution is based on the storage of energy obtained through the aluminium foam roof and facade cladding, which are capable of absorbing the desired, or even take away the excess energy to the surroundings if necessary. The energy effectively generated by this way is by means of piping system distributed by heating liquid medium/coolant to interior ceiling heat exchangers made of aluminium foam enabling due to filling by <span style="text-decoration: underline;">P</span>hase <span style="text-decoration: underline;">C</span>hange <span style="text-decoration: underline;">M</span>aterial<span style="text-decoration: underline;">s</span> (PCMs) to store the energy required for heating/cooling for a period of at least several hours. This progressive technology, therefore, contributes significantly to reducing of energy demand and thus also the prices of future not only large buildings but also small family houses that are able to achieve the optimal thermal comfort by extremely low costs. Possibility to manufacture facade, as well as the interior panels of aluminium foam, is a good prerequisite for ensuring that these structural components could be in the nearest future made from fully recyclable aluminium alloys. This fact indicates large potential chance for long-term sustainable further development of above-mentioned advanced technologies.


2019 ◽  
Vol 97 ◽  
pp. 01042
Author(s):  
Anna Lis

The WHO report shows that air in the majority of cities in the world is polluted to a large extent. Air pollution is one of the basic environmental causes of premature deaths in the world. The main source of air pollution in cities is the low emission associated with fuel combustion to generate heat for buildings heating, communication and industry. The existing buildings in Poland are characterized by high energy and, consequently, ecological potential. The aim is to estimate predicted energetic and ecological effects of activities that adapt existing residential buildings to the requirements for the thermal protection of buildings in Poland and presenting the possibility of using renewable energy sources. The energy demand for heating buildings at 60-70 kWh/(m2rok) has been adopted. The calculations show that as a result of this adjustment, the energy demand for heating in residential buildings may decrease by an average of around 67% compared to 2011. Such actions will reduce the overall emissions of air pollution from households by reducing the energy requirement for heating apartments from about 30% to about 67%, depending on the type of pollutant.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kehinde Oladoke Olatunji ◽  
Noor A. Ahmed ◽  
Oyetola Ogunkunle

AbstractPopulation increase and industrialization has resulted in high energy demand and consumptions, and presently, fossil fuels are the major source of staple energy, supplying 80% of the entire consumption. This has contributed immensely to the greenhouse gas emission and leading to global warming, and as a result of this, there is a tremendous urgency to investigate and improve fresh and renewable energy sources worldwide. One of such renewable energy sources is biogas that is generated by anaerobic fermentation that uses different wastes such as agricultural residues, animal manure, and other organic wastes. During anaerobic digestion, hydrolysis of substrates is regarded as the most crucial stage in the process of biogas generation. However, this process is not always efficient because of the domineering stableness of substrates to enzymatic or bacteria assaults, but substrates’ pretreatment before biogas production will enhance biogas production. The principal objective of pretreatments is to ease the accessibility of the enzymes to the lignin, cellulose, and hemicellulose which leads to degradation of the substrates. Hence, the use of pretreatment for catalysis of lignocellulose substrates is beneficial for the production of cost-efficient and eco-friendly process. In this review, we discussed different pretreatment technologies of hydrolysis and their restrictions. The review has shown that different pretreatments have varying effects on lignin, cellulose, and hemicellulose degradation and biogas yield of different substrate and the choice of pretreatment technique will devolve on the intending final products of the process.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2361
Author(s):  
Josué Aarón López-Leyva ◽  
Carolina Barrera-Silva ◽  
Luisa Fernanda Sarmiento-Leyva ◽  
María Fernanda González-Romero

This manuscript presents the analysis of a real distributed generation network considering the integration of Active Buildings that meet the Passivhaus standard criteria at the Premium level, as a base case model. The novelty aspect presented in this paper is the interconnection of Active Buildings based on the Passivhaus standard at the Premium level with the National Electricity System (particularly, in Mexico’s North Baja California region) to mitigate the energy deficit. The objective of the proposal grid is to reduce the energy deficit (≈600 MW) due to the high energy demand in the region and the reduced energy generation through conventional and renewable energy sources. In a particular way, the energy rehabilitation of some buildings was analyzed with the aim of reducing the energy demand of each one and then adding energy generation through renewable sources. As a result, all Passivhaus standard criteria (i.e., heating and cooling demands, heating and cooling loads, among others) were met. Regarding the Active Buildings performance in each distributed generation circuit, an overall installed power capacity of ≈2.3 MW was obtained, which corresponds to ≈19.1% of the maximum capacity, and ≈34.30% of the recommended integration capacity. In addition, adequate results were obtained related to the import and export of energy between distributed generation circuits, i.e., the energy exchange is up to ≈106.8 kW, intending to reduce the energy contribution of the utility electrical network. Finally, the analysis of the Active Buildings showed an increase in the net generation forecast, up to ≈2.25 MW.


2019 ◽  
Vol 9 (23) ◽  
pp. 5197
Author(s):  
Asif Khan ◽  
Turki Alghamdi ◽  
Zahoor Khan ◽  
Aisha Fatima ◽  
Samia Abid ◽  
...  

An increase in the world’s population results in high energy demand, which is mostly fulfilled by consuming fossil fuels (FFs). By nature, FFs are scarce, depleted, and non-eco-friendly. Renewable energy sources (RESs) photovoltaics (PVs) and wind turbines (WTs) are emerging alternatives to the FFs. The integration of an energy storage system with these sources provides promising and economical results to satisfy the user’s load in a stand-alone environment. Due to the intermittent nature of RESs, their optimal sizing is a vital challenge when considering cost and reliability parameters. In this paper, three meta-heuristic algorithms: teaching-learning based optimization (TLBO), enhanced differential evolution (EDE), and the salp swarm algorithm (SSA), along with two hybrid schemes (TLBO + EDE and TLBO + SSA) called enhanced evolutionary sizing algorithms (EESAs) are proposed for solving the unit sizing problem of hybrid RESs in a stand-alone environment. The objective of this work is to minimize the user’s total annual cost (TAC). The reliability is considered via the maximum allowable loss of power supply probability ( L P S P m a x ) concept. The simulation results reveal that EESAs provide better results in terms of TAC minimization as compared to other algorithms at four L P S P m a x values of 0%, 0.5%, 1%, and 3%, respectively, for a PV-WT-battery hybrid system. Further, the PV-WT-battery hybrid system is found as the most economical scenario when it is compared to PV-battery and WT-battery systems.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2906 ◽  
Author(s):  
George E. Halkos ◽  
Eleni-Christina Gkampoura

The world’s ever-increasing population, combined with economic and technological growth and a new, modern way of life, has led to high energy demand and consumption. Fossil fuels have been the main energy source for many years, but their use has many negative impacts on the environment. This has made the transition to renewable energy sources necessary in order to address climate change and meet the 1.5 °C goal. This paper is a review of the different types of renewables, their potentials and limitations, and their connection to climate change, economic growth, and human health. It also examines consumers’ willingness to pay for renewables in different countries, based on the existing literature. IEA (International Energy Agency) data are analyzed, concerning renewables’ current use, the evolution of their usage, and forecasts about their future usage. Finally, policies and strategies are recommended in order to address climate change and fully integrate renewables as a sustainable energy source.


2016 ◽  
Vol 58 (1) ◽  
Author(s):  
Fabian Kern

AbstractThe increasing share of volatile renewable energy sources leads to new challenges for the power system. Flexible operation of power consumers is getting more important to keep power generation in balance with power consumption. Large potential loads are available in the industrial sector. Flexibility of these large loads is hard to utilize and requires consideration of the specific operational constraints. In the automotive industry test rigs for the development of cars or components, like engine or gearbox, exist, which are characterized by a high energy demand. In this work the idea of an energy-aware scheduling concept for test rigs in the automotive industry is presented. The goal is to provide an optimized schedule based on internal (e. g., prediction of local power generation) or external (e. g., electricity prices) signals. To this end, a methodological approach for the classification, identification and selection of suitable test rigs is presented. Based on this, a model of the test rigs has to be developed which can be used in a simulation to evaluate the optimization algorithm. Finally, the need for design guidelines for the implementation of an energy-aware test rig scheduling in a real-world evaluation environment are discussed.


Author(s):  
Molla Asmare ◽  
Mustafa Ilbas

Nowadays, the most decisive challenges we are fronting are perfectly clean energy making for equitable and sustainable modern energy access, and battling the emerging alteration of the climate. This is because, carbon-rich fuels are the fundamental supply of utilized energy for strengthening human society, and it will be sustained in the near future. In connection with this, electrochemical technologies are an emerging and domineering tool for efficiently transforming the existing scarce fossil fuels and renewable energy sources into electric power with a trivial environmental impact. Compared with conventional power generation technologies, SOFC that operate at high temperature is emerging as a frontrunner to convert the fuels chemical energy into electric power and permits the deployment of varieties of fuels with negligible ecological destructions. According to this critical review, direct ammonia is obtained as a primary possible choice and price-effective green fuel for T-SOFCs. This is because T-SOFCs have higher volumetric power density, mechanically stable, and high thermal shocking resistance. Also, there is no sealing issue problem which is the chronic issues of the planar one. As a result, the toxicity of ammonia to use as a fuel is minimized if there may be a leakage during operation. It is portable and manageable that can be work everywhere when there is energy demand. Besides, manufacturing, onboard hydrogen deposition, and transportation infrastructure connected snags of hydrogen will be solved using ammonia. Ammonia is a low-priced carbon-neutral source of energy and has more stored volumetric energy compared with hydrogen. Yet, to utilize direct NH3 as a means of hydrogen carrier and an alternative green fuel in T-SOFCs practically determining the optimum operating temperatures, reactant flow rates, electrode porosities, pressure, the position of the anode, thickness and diameters of the tube are still requiring further improvement. Therefore, mathematical modeling ought to be developed to determine these parameters before planning for experimental work. Also, a performance comparison of AS, ES, and CS- T-SOFC powered with direct NH3 will be investigated and best-performed support will be carefully chosen for practical implementation and an experimental study will be conducted for verification based on optimum parameter values obtained from numerical modeling.


Sign in / Sign up

Export Citation Format

Share Document