scholarly journals Agricultural Crop Monitoring and Controlling using IoT

To get the better crop production in agriculture business the farmer needs regular status of crop. This can be achieved by using Internet of Things (IoT) which collects information about soil moisture, temperature, light intensity etc., from integration of wireless sensors. The IoT technology provides control actions by using micro controllers based on this information through smart phones or laptops when farmers get alerts in their phones. The collected data can be stored and viewed as results based on graphical charts. This work tries to digitalize farming and agricultural activities so farmer can face the challenges by accurately predicting the crop growth. This system will definitely accelerate the agriculture business by keep updating the current conditions of land with the help of IoT at anywhere in the world

Author(s):  
Lungelihle Jafta ◽  
Nnamdi Nwulu ◽  
Eustace Dogo

Energy for heating and cooling is among the biggest costs in greenhouse crop production. This has led to a rethink on energy-saving strategies, including the demand for solar energy as a viable renewable and sustainable choice for greenhouse farming. This chapter presents the development of a solar-powered system leveraging on internet of things and GSM technologies for sensing, controlling, and maintaining optimal climatic parameters inside a greenhouse. The proposed system is designed to automatically measure and monitor changes in temperature, humidity, soil moisture, and the light intensity. The strategy utilized in the design framework provides the user with the information of the measured parameters online and via SMS regardless of their geographical location. The chapter also incorporates a mechanism to self-regulate the climatic condition inside the greenhouse, suitable for the plant growth. Such a system can help improve the quantity and quality of crops grown in a greenhouse. Tests carried out on the system prove its effectiveness according to the design considerations.


Author(s):  
Luan Alves ◽  
Elida Antunes ◽  
Ricardo Ferreira ◽  
José Augusto Nacif

The growth of the world population increases the demand for food and other products from agriculture. Therefore, it is increasingly needed to enhance and optimize the productivity of farms. Through using a Wireless Sensor Network (WSN) and the application of the internet of things (IoT) technologies, we can better monitor the condition of farm crops. In this work, we designed a Bluetooth Low Energy mesh network joined fluorescence sensors for agricultural crop monitoring, and also we evaluated the suitability of this solution in a crop field scenario.


Author(s):  
Shankar Chaudhary

Despite being in nascent stage m-commerce is gaining momentum in India. The explosive growth of smart-phone users has made India much loved business destination for whole world. Indian internet user is becoming the second largest in the world next to China surpassing US, which throws open plenty of e-commerce opportunities, not only for Indian players, offshore players as well. Mobile commerce is likely to overtake e-commerce in the next few years, spurred by the continued uptrend in online shopping and increasing use of mobile apps.The optimism comes from the fact that people accessing the Internet through their mobiles had jumped 33 per cent in 2014 to 173 million and is expected to grow 21 per cent year-on-year till 2019 to touch 457 million. e-Commerce brands are eyeing on the mobile app segment by developing user-friendly and secure mobile apps offering a risk-free and easy shopping experience to its users. Budget 4G smart phones coupled with affordable plans, can very well drive 4G growth in India.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Jan Piekarczyk

AbstractWith increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Mashoukur Rahaman ◽  
Md. Esraz-Ul-Zannat

AbstractCyclonic catastrophes frequently devastate coastal regions of Bangladesh that host around 35 million people which represents two-thirds of the total population. They have caused many problems like agricultural crop loss, forest degradation, damage to built-up areas, river and shoreline changes that are linked to people’s livelihood and ecological biodiversity. There is an absence of a comprehensive assessment of the major cyclonic disasters of Bangladesh that integrates geospatial technologies in a single study. This study aims to integrate geospatial technologies with major disasters and compares them, which has not been tried before. This paper tried to identify impacts that occurred in the coastal region by major catastrophic events at a vast level using different geospatial technologies. It focuses to identify the impacts of major catastrophic events on livelihood and food production as well as compare the impacts and intensity of different disasters. Furthermore, it compared the losses among several districts and for that previous and post-satellite images of disasters that occurred in 1988, 1991, 2007, 2009, 2019 were used. Classification technique like machine learning algorithm was done in pre- to post-disaster images. For quantifying change in the indication of different factors, indices including NDVI, NDWI, NDBI were developed. “Change vector analysis” equation was performed in bands of the images of pre- and post-disaster to identify the magnitude of change. Also, crop production variance was analyzed to detect impacts on crop production. Furthermore, the changes in shallow to deep water were analyzed. There is a notable change in shallow to deep water bodies after each disaster in Satkhira and Bhola district but subtle changes in Khulna and Bagerhat districts. Change vector analysis revealed greater intensity in Bhola in 1988 and Satkhira in 1991. Furthermore, over the years 2007 and 2009 it showed medium and deep intense areas all over the region. A sharp decrease in Aus rice production is witnessed in Barishal in 2007 when cyclone “Sidr” was stricken. The declination of potato production is seen in Khulna district after the 1988 cyclone. A huge change in the land-use classes from classified images like water body, Pasture land in 1988 and water body, forest in 1991 is marked out. Besides, a clear variation in the settlement was observed from the classified images. This study explores the necessity of using more geospatial technologies in disastrous impacts assessment around the world in the context of Bangladesh and, also, emphasizes taking effective, proper and sustainable disaster management and mitigation measures to counter future disastrous impacts.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Jonathan Suazo-Hernández ◽  
Erwin Klumpp ◽  
Nicolás Arancibia-Miranda ◽  
Patricia Poblete-Grant ◽  
Alejandra Jara ◽  
...  

Engineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growthnaturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marziyeh Khavari ◽  
Reza Fatahi ◽  
Zabihollah Zamani

AbstractClimate change and population increase are two challenges for crop production in the world. Hazelnut (Corylus avellana L.) is considered an important nut regarding its nutritional and economic values. As a fact, the application of supporting materials as foliage sprays on plants will decrease biotic and abiotic stresses. In this study, the effects of salicylic acid (0, 1 mM and 2.5 mM) and kaolin (0, 3% and 6%) sprays were investigated on morphological, physiological, pomological, and biochemical characteristics of hazelnut. The results showed that 1 mM salicylic acid and 6% kaolin had the best effects on nut and kernel weight compared to control. Biochemical parameters such as chlorophyll a, b, a + b, and carotenoid contents showed that salicylic acid and kaolin improved pigment concentration. Proline and antioxidant contents such as phenolic acids, SOD, APX, and CAT enzyme activities increased by these applications. On the other hand, lipid peroxidation, protein content, and H2O2 content were decreased. Based on the tolerance index result, Merveille de Bollwiller cultivar showed the highest tolerance while 'Fertile de Coutard' had the lowest value. Therefore, hazelnut performance may be improved through exogenous application of the signaling (salicylic acid) and particle film (Kaolin) compounds in warmer climates.


Author(s):  
Vimal Mishra ◽  
Saran Aadhar ◽  
Shanti Shwarup Mahto

AbstractFlash droughts cause rapid depletion in root-zone soil moisture and severely affect crop health and irrigation water demands. However, their occurrence and impacts in the current and future climate in India remain unknown. Here we use observations and model simulations from the large ensemble of Community Earth System Model to quantify the risk of flash droughts in India. Root-zone soil moisture simulations conducted using Variable Infiltration Capacity model show that flash droughts predominantly occur during the summer monsoon season (June–September) and driven by the intraseasonal variability of monsoon rainfall. Positive temperature anomalies during the monsoon break rapidly deplete soil moisture, which is further exacerbated by the land-atmospheric feedback. The worst flash drought in the observed (1951–2016) climate occurred in 1979, affecting more than 40% of the country. The frequency of concurrent hot and dry extremes is projected to rise by about five-fold, causing approximately seven-fold increase in flash droughts like 1979 by the end of the 21st century. The increased risk of flash droughts in the future is attributed to intraseasonal variability of the summer monsoon rainfall and anthropogenic warming, which can have deleterious implications for crop production, irrigation demands, and groundwater abstraction in India.


1975 ◽  
Vol 8 (5) ◽  
pp. 268-270 ◽  
Author(s):  
W P Feistritzer

In this short article the author indicates the present stages of development of variety evaluation, testing, certification, production and marketing of quality seed—of cereals, industrial crops, pasture plants and vegetables—in major geographical regions of the world and draws attention to some of the underlying problems which must be faced in the future if further progress is to be made.


Sign in / Sign up

Export Citation Format

Share Document