scholarly journals Study of Impact Strength, Hardness, Micro Structure and Tribological Properties of Al5052 Composite with SiC and Graphite as Reinforcements

Aluminum Composite are widely used in aviation and automotive industries because it is light in weight hence it reduces the fuel consumption and improves the energy efficiency. The present work deals with preparing Aluminum-based particle reinforced composite fabricated through Stir Casting Process wherein Sic along with Graphite are used as reinforcements which has improved mechanical properties with reduction in weight. Impact toughness, hardness along with wear property of the fabricated composite samples were tested and compared with Al 5052 Cast Alloy based on ASTM Standard. From the testing, we can conclude that Impact toughness, Hardness and wear properties of Al 5052 base alloy is considerably increased due to the addition of particulate reinforcements. And also there is not much studies reported on the influence of Sic and Graphite as reinforcement on Impact toughness, hardness along with Wear behavior of Al 5052 alloy. So the objective of the current work is to fabricate Al 5052 base alloy reinforced with particulate composite by stir casting process and to study the Impact toughness, hardness, and microstructure along with wear behavior of the fabricated composites.

2021 ◽  
Vol 5 (1) ◽  
pp. 11-20
Author(s):  
Mardy Suhandani ◽  
Poppy Puspitasari ◽  
Jeefferie Abd Razak

The automotive and aviation fields require engineering materials that can save and optimise fuel consumption. Unique characteristics of lightweight, higher strength to weight ratio, good corrosion resistance, and good castability are indispensable for castable metal such as Silicon Aluminium (Al-Si). The mechanical properties of Al-Si could be further improved through the addition of Cobalt Oxide (CoO) nanoparticles during the casting process. The importance and purpose of this study were to determine the impact toughness, hardness and fracture morphology of Al-Si metal alloy filled with 0.015 wt.% CoO nanofiller at the various melting temperature of 750 °C, 800 °C and 850 °C. The stir casting method was utilised considering the most appropriate method for mixing nanoparticles powder into the Al-Si matrix. Three test specimens were prepared for each temperature variation. Impact testing using the Charpy method (ASTM E23-56 T) and hardness testing using Rockwell Superficial HR15T and fracture morphology obtained from impact testing fractures were performed accordingly. The impact test results showed that the Al-Si added with 0.015% CoO at 800 °C of melting temperature possessed the highest impact toughness value of 25.111 x 10-3 Joule mm-2 than the other variations. The hardness test results showed that Al-Si added 0.015% CoO with a melting temperature of 850 °C had the highest hardness value of 79.52 HR15T. The fracture morphology of the impact test in all specimens shows uniform brittle fracture characteristics. It is found that the melting temperature during the stir-casting process of Al-Si has played a significant role in influencing the resulted properties of Al-Si filled CoO nanoparticles metal matrix composites. The selection of an accurate melting temperature for the stir casting process will affect the resulted properties of produced metal composites.


2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Khaled Salem Alhawari ◽  
Mohd Zaidi Omar ◽  
Mariyam Jameelah Ghazali ◽  
Mohd Shukor Salleh ◽  
Mohammed Naser Abdulrazaq

In this study a hypoeutectic Al-6Si-3Cu aluminium alloy was synthesized using two different routes: the thixoforming process and the conventional mould casting process. The microstructural features, hardness and wear behavior of thixoformed alloy have been evaluated and compared with that of as-cast alloy. Cooling slope method was used to produce the non-dendritic microstructure feedstock for thixoforming. Thixoforming was carried out at 50% liquid fraction. The dry sliding wear behaviour of the produced alloys was investigated under two loads; namely, 10 and 50 N and 1m/s sliding speed for 9 km sliding distance. The thixoformed alloy exhibited globular primary phase morphology with fine and uniform distributed Si and intermetallic particles. On the contrary, dendritic primary phase, coarse flaky silicon particles and segregated microstructure has been observed in conventional cast alloy. Thixoformed alloy exhibited improvement in the wear resistance in comparison to the conventional cast alloy, which may be attributed to the microstructural enhancement resulting in improved hardness. The thixoformed samples displayed lower volume loss of ~16.20 mm3 and ~42.40 mm3 at loads of 10 and 50 N respectively compared with that of conventional cast samples. On the basis of observations and analyses on the wear rates and worn surfaces, the wear mechanism of the alloys was dominantly controlled by abrasive, adhesive and minor delamination.


2020 ◽  
Vol 22 (4) ◽  
pp. 1031-1046
Author(s):  
X. Canute ◽  
M. C. Majumder

AbstractThe need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investigation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning electron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance.


2021 ◽  
Vol 73 (6) ◽  
pp. 980-985
Author(s):  
Kalaiyarasan A ◽  
Sundaram S ◽  
Gunasekaran K ◽  
Bensam Raj J.

Purpose Aerospace field is demanding a material with superior strength and high resistance against wear, tear and corrosion. The current study aimed to develop a new material with high performance to be applicable in aerospace field Design/methodology/approach A metal matrix composite AA8090-WC-ZrC was fabricated using stir casting method and its tribological behavior was investigated. Totally, five composites viz. AA/Z, AA/W, AA/WZ (1:3), AA/WZ (1:1) & AA/WZ (3:1) were prepared. Micro hardness, tensile and wear study were performed on the fabricated composites and the results were compared with AA8090 alloy Findings Vickers hardness test resulted that the AA/W composite showed the higher hardness value of 160 HB compared to other materials due to the reinforcing effect of WC particles with high hardness. Tensile test reported that the AA/W composite displayed the maximum tensile strength of 502 MPa owing to the creation of more dislocation density. Further, wear study showed that the AA/W composite exhibited the least wear rate of 0.0011 mm3/m because of the more resisting force offered by the WC particles. Furthermore, the AA/W composite showed the slightest mass loss of 0.0028 g and lower COF value of 0.31 due to the hinder effect of WC particle to the movement of atoms in AA8090 alloy Originality/value This work is original in the field of aerospace engineering and materials science which deals with the fabrication of AA8090 alloy with the reinforcement particles such as tungsten carbide and zirconium carbide. The impact of the combination of hybrid particles and their volume fractions on the tribological properties has been investigated in this work. This work would provide new scientific information to society.


2021 ◽  
Vol 118 (6) ◽  
pp. 614
Author(s):  
Chellamuthu Ramesh Kumar ◽  
Subramanian Baskar ◽  
Ganesan Ramesh ◽  
Pathinettampadian Gurusamy ◽  
Thirupathy Maridurai

In this research, investigations were carried out on Al6061 base alloy with the changing weight percentage of silicon carbide (SiC) and boron carbide (B4C) with keeping the amount of talc constant. The main objective of this present study was to improve the wear resistance of aluminum alloy using SiC/B4C/talc ceramic particles using stir-casting technique and how the eco-friendly talc content influencing the solid lubricity during the abrasion process. The experiments were conducted via orthogonal array of L27 using Taguchi’s method. The optimum value along with the coefficient of friction was obtained on the basis of grey relational equations and ANOVA, which helped in analysis of most influential input parameters such as applied load, sliding speed, sliding distance and percentage of reinforcement. Conformation tests were performed for the purpose of validation of the experimental results. The specimens were analyzed using scanning electron microscope (SEM) with EDX for micro structural studies. The SiC, B4C and talc presence in the composite helped to improve the mechanical properties, according to the results. The presence of solid lubricant talc as reinforcement to the aluminum hybrid composite reduced the wear properties and decreased the co-efficient friction. These wear resistance improved aluminum metal matrix composites could be used in automobile, defense and domestic applications where high strength and wear resistance required with lesser specific weight.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 45 ◽  
Author(s):  
Erding Wen ◽  
Renbo Song ◽  
Wenming Xiong

The microstructure and wear behavior of a 500 Brinell hardness (HB) grade wear-resistant steel tempered at different temperatures were investigated in this study. The tempering microstructures and wear surface morphologies were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The relationship between mechanical properties and wear resistance was analyzed. The microstructure of the steel mainly consisted of tempered martensite and ferrite. Tempered troosite was obtained when the tempering temperature was over 280 °C. The hardness decreased constantly with the increase of tempering temperature. The same hardness was obtained when tempered at 260 °C and 300 °C, due to the interaction of Fe3C carbides and dislocations. The impact toughness increased first and reached a peak value when tempered at 260 °C. As the tempering temperature was over 260 °C, carbide precipitation would occur along the grain boundaries, which led to temper embrittlement. The best wear resistance was obtained when tempered at 200 °C. At the initiation of the wear test, surface hardness was considered to be the dominant influencing factor on wear resistance. The effect of surface hardness improvement on wear resistance was far greater than the impact toughness. With the wear time extending, the crushed quartz sand particles and the cut-down burs would be new abrasive particles which would cause further wear. Otherwise, the increasing contact temperature would soften the matrix and the adhesive wear turned out to be the dominant wear mechanism, which would result in severe wear.


2021 ◽  
Author(s):  
Subodh Salunkhe ◽  
Balasaheb Gandhare ◽  
Swanand Kulkarni

Aluminium (Al) is existing in a very large quantity found in the earth’s crust and third most abundant element. Al is easily available, it has a high strength to weight ratio and it is durable. Al alloy is light weight and corrosion resistant hence used in aircraft and automobile industries. Wear is loss of material from surfaces and the life of material decreases due to wear. Al 6061 has good mechanical properties, it exhibits good weldability and it has wear resistant properties. In the literature review, information about wear resistance properties of composites containing Al 6061 as a matrix is studied for different reinforcement materials for various applications. Very few researchers studied Al 6061 is a matrix material and bagasse ash as reinforced materials. In this paper, aluminum composite material manufacturing using the stir casting method is carried out for manufacturing because of flexibility, simplicity, and having mass production capability. The problem identification about improving the wear properties of Al 6061 matrix material reinforced bagasse ash has been explored and further, research objective and methodology for the same is discussed with flowcharts. The work carried still to date is reported in this working paper.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
P. Karuppusamy ◽  
K. Lingadurai ◽  
V. Sivananth

The present investigation explores the collective outcome of hard particle reinforcement with deep cryogenic treatment (DCT) on wear responses of magnesium metal matrix nanocomposites (MMNC). A multilevel factorial design of experiments with control factors of applied load (20 and 40 N), sliding speed (1.3, 1.7, 2.2, and 3.3 m/s), reinforcement % (0% and 1.5%), and cryogenic treatment (cryogenic-treated and nontreated) was deployed. Around 1.5 wt % WC-reinforced MMNC were fabricated using stir-casting process. DCT was performed at −190 °C with soaking time of 24 h. The dry sliding wear trials were done on pin-on-disk tribometer with MMNC pin and EN8 steel disk for a constant sliding distance of 2 km. The WC reinforcement contributed toward the improvement in wear rate of MMNC appreciably by absorbing the load and frictional heat at all loads and speeds. During DCT of AZ91, the secondary ß-phase (Mg17Al12) was precipitated that enriched the wear resistance, only for the higher load of 40 N. Scanning electron microscope analyses of the cryogenic-treated MMNC ensured the existence of both ß-phase precipitates and WC in the contact area. As a result, the adhesiveness of this pin was lesser, which attributed to the improved wear resistance (approximately 33%) as compared to base alloy. The coefficient of friction was also less for cryogenic-treated MMNC. A regression analysis was made to correlate the control elements and the responses.


2020 ◽  
Vol 979 ◽  
pp. 10-15
Author(s):  
K. Sekar ◽  
K. Jayakumar

Hybrid metal matrix composites (MMCs) were prepared with AA 5754 as matrix and B4C (fixed with 1 wt.% and average particle size as 25 μm) and Al2O3 reinforcements (varied from 0.5 to 2 wt. % with the interval of 0.5 and average particle size as 50 nm) using Rheo-squeeze casting process. Microstructure images were taken to observe the uniform distribution of reinforcement particles on the matrix alloy. The tensile strength for AA 5754 with 1 wt.% B4C and 2 wt.% Al2O3 hybrid composite showed higher value compared to base alloy and other composites. The wt. % of Al2O3 in the composite is increased to 2 %, the tensile strength and compressive strength were also increased due to combined Rheo-squeeze casting. AA 5754 reinforced with 1 wt.% B4C and 1.5 wt.% Al2O3 MMC indicated the Impact strength value of 30 Joules which is higher than AA 5754 matrix alloy and other compositions.


2015 ◽  
Vol 65 (4) ◽  
pp. 330 ◽  
Author(s):  
Shubhranshu Bansal ◽  
J. S. Saini

<p>Al359 alloy was reinforced with Silicon Carbide and Silicon Carbide/Graphite particles using stir casting process. Thereafter their mechanical and wear properties were investigated. It was found that the hardness of the Al359-Silicon Carbide composite is better than Al359-Silicon Carbide-Graphite composite. The Silicon Carbide/Graphite reinforced composite exhibits a superior ultimate tensile strength against Silicon Carbide reinforced composite. The wear test was conducted at different loading, sliding velocities and sliding distances conditions. Results showed that the wear resistance of Al359 alloy increased with the reinforcement of Silicon Carbide/Graphite material for higher loading, sliding velocities and sliding distance conditions. SEM images of the worn surface of the pin were examined to study their wear mechanism.</p><p><strong>Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 330-338, DOI: http://dx.doi.org/10.14429/dsj.65.8676</strong></p>


Sign in / Sign up

Export Citation Format

Share Document