scholarly journals Parent Selection for IPv6 Enabled Routing Protocol for Low Power Lossy Network

2019 ◽  
Vol 8 (2) ◽  
pp. 6418-6421

RPL (IPV6 Routing Protocol for Low power lossy network) is a network layer routing protocol. It is considered as best routing protocol for Internet of Things (IoT). The packet size and techniques used in RPL are designed in such a way to support low powered devices. RPL was developed by Internet Engineering Task Force (IETF) work group and still it is in design phase. RPL construct a loop less tree to maintain all the nodes. The parent selection is the backbone of RPL protocol. In parent selection rank calculation play a vital role. In this paper an extensive survey is done about RPL. The various techniques used in RPL are studied in this paper. The performance of RPL protocol is examined using cooja simulator. The working of RPL tested using Contiki enabled sky motes under cooja environment. The heterogeneity of network density and mote type are the major factors considered to examine RPL in terms of Energy efficiency, Packet Delivery Ratio and Response time.

Author(s):  
S. Sankar ◽  
P. Srinivasan

<p>Maximizing the network lifetime is one of the major challenges in Low Power and Lossy Networks (LLN). Routing plays a vital role in it by minimizing the energy consumption across the networks through the efficient route selection for data transfer. IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) is a IETF standardized IPv6 routing protocol for LLN. In this paper, we propose Energy and Load aware RPL (EL-RPL) protocol, which is an enhancement of RPL protocol. It uses a composite metric, calculated based on expected transmission count (ETX), Load and battery depletion index (BDI), for the route, selection. The COOJA simulator is used for performance evaluation.  EL-RPL is compared with other similar protocols RER(BDI) RPL and fuzzy logic based RPL (OF-FL RPL). The simulation result shows that the EL-RPL improves the network lifetime by 8-12% and packet delivery ratio 2-4%.</p>


Author(s):  
Abdelhadi Eloudrhiri Hassani ◽  
Aicha Sahel ◽  
Abdelmajid Badri ◽  
El Mourabit Ilham

The internet of things technology is classified as a Low power and lossy network. These kinds of networks require a trustworthy routing protocol considered as the backbone for management and high quality of service achievements. IPv6 routing protocol for Low power and lossy network (RPL) was able to gain popularity compared to other routing protocols dedicated to IoT for its great flexibility through the objective function. Default objective functions implemented in the RPL core are based on a single metric. Consequently, the routing protocol can’t cope with different constraints and show congestion issues in high traffics. For that, we proposed in our paper multi-constraints-based objective function with adaptive stability (MCAS-OF), which uses novel strategies for Radio strength indicator, node energy consumption, hop count and a designed work-metric combination, new rank processing, and parent selection procedure. The network stability was also taken into account, since the multi constraints can lead to frequent parent changes, using an adaptive threshold. The proposal, evaluated under the COOJA emulator against standard-RPL and EC-OF, showed a packet delivery ratio improvement by 24% in high traffics, a decrease in the power consumption close to 44%, achieved less latency and DIO control messages, it also gives a good workload balancing by reducing the standard deviation of node’s power consumption.


2021 ◽  
Author(s):  
Archana Bhat ◽  
Geetha V

Abstract IPv6 Routing Protocol for low power and lossy networks (RPL) is a standardized and default routing protocol for low power lossy networks. However, this is basically designed for sensor networks with scalar data and not optimised for the networks with multi-modal sensors. The data rate of each multi-modal sensor varies based on various applications. RPL suffers from packet drops and re-transmissions which results in packet loss and energy consumption in case of multi-modal data transmission. Hence, the routing strategy implemented in RPL needs better scheduling strategy at parent node for forwarding packets based on various parameters. In this paper, relevant Objective Functions for multi-modal sensor data communication is proposed based on various parameters identified and a weighted ranking based scheduling strategy is proposed for multi-modal data communication called R-RPL. The goal of proposed ranking based RPL (R-RPL) is to increase the throughput and reduce the loss in terms of energy and delay based on proposed scheduling strategy for parent selection. The performance of the proposed R-RPL is evaluated in the contiki based Cooja simulator and compared with RPL protocol. The analysis shows that the R-RPL performs better compared to RPL with respect to packet delivery ratio and energy consumption.


2020 ◽  
Vol 26 (11) ◽  
pp. 1366-1381
Author(s):  
Sathishkumar Natesan ◽  
Rajakumar Krishnan

The Routing Protocol for Low Power and Lossy Networks (RPL) is operated by gadgets comprised of many devices of embedded type with limited energy, memory as well as resources that do their process. The improvements in the life of the network and energy conservation are the key challenging features in Low Power and Lossy Networks (LLN). Obviously, the LLN has a key strategic part in routing. The Internet of Things (IoT) device is expected to make the apt choice. In LLN, the poor routing choice leads to traffic congestion, reduction in power as well as packet loss ratio. The task in the proposal analyzes Delay (D), Load (L) and Battery Discharge Index (BDI) pivoted Energy Efficient Composite Metric Routing (EECMR) protocol for LLN. The performance of the work in the proposal is evaluated by the COOJA simulator. It outperforms with respect to Network Lifetime (NL), Delay as well as Packet Delivery Ratio (PDR) contrasted to the routing metrics like Traffic Load (TL), Link Quality (LQ), Residual Energy (RE), RE-Battery Discharge Index (RE-BDI) and Hop Count (HC).


2018 ◽  
Vol 19 (2) ◽  
pp. 80-89
Author(s):  
Rosminazuin Ab. Rahim ◽  
Abdallah Awad ◽  
Aisha Hassan Abdalla Hashim ◽  
ALIZA AINI MD RALIB

ABSTRACT: The current de-facto routing protocol over Low Power and Lossy Networks (LLN) developed by the IETF Working Group (6LOWPAN), is named as Routing Protocol for Low Power and Lossy networks (RPL). RPL in the network layer faces throughput  challenges due to the potential  large networks, number of nodes, and that  multiple  coexisting applications  will  be  running  in  the  same physical layer.  In this study, a node metric for RPL protocol based on the node’s Queue Backlogs is introduced, which leads to a better throughput performance while maintaining the delay and the ability to use with different network applications. This metric depends on the length of Packet Queue of the nodes with the consideration of other link and node metrics, like ETX or energy usage, leading to better load balancing in the network. To implement and evaluate the proposed metric compared to other RPL metrics, ContikiOS and COOJA simulator are used. Extensive simulations have been carried out in a systematic way resulting in a detailed analysis of the introduced metric namely W-metric, expected transmission count (ETX) and objective function zero (OF0) that uses hop-count as a routing metric. The analysis and comparison are based on five performance parameters, which are throughput, packet delivery ratio (PDR), latency, average queue length, and power consumption. Simulation results show that the introduced W-metric has a good performance compared to other RPL metrics with regards to performance parameters mentioned above. At the same time, the results show that its latency performance is comparable with other RPL routing metrics. In a sample simulation of 500 seconds with 25 nodes and with nodes sending packets periodically to the network root at a rate of 1 packet per 4 seconds, W-metric showed a very efficient throughput of 5.16 kbps, an increase of 8.2% compared to ETX. Results showed that it has a packet delivery ratio of 93.3%, which is higher compared to 83.3% for ETX and 74.2% for OF0. Average queue length of 0.48 packet shows improvement of 15.8% better than ETX. In addition, it exhibits an energy consumption of 5.16 mW which is 2.1% less than ETX. Overall, W-metric appears to be a promising alternative to ETX and OF0 as it selects routes that are more efficient by working on load balancing of the network and by considering the link characteristics. ABSTRAK: Protokol penghalaan de-facto semasa ke atas Rangkaian Kekuatan Rendah dan Lossy yang dibangunkan oleh Kumpulan Kerja IETF (6LOWPAN), dinamakan Protokol Penghalaan untuk Kekuatan Rendah dan Rugi (RPL). RPL dalam lapisan rangkaian menghadapi cabaran throughput berikutan jangkaan rangkaian besar, bilangan nod dan aplikasi berganda bersama akan diproses dalam lapisan fizikal yang sama. Dalam kajian ini, satu metrik nod untuk protokol RPL berdasarkan pada Backend Queue node diperkenalkan, yang membawa kepada prestasi yang lebih baik sambil mengekalkan kelewatan dan keupayaan untuk digunakan dengan aplikasi rangkaian yang berbeza. Metrik ini bergantung pada panjang Packet Queue dari node dengan pertimbangan metrik lain dan nodus lain, seperti ETX atau penggunaan tenaga, yang mengarah kepada keseimbangan beban yang lebih baik dalam rangkaian. Untuk melaksanakan dan menilai metrik yang dicadangkan berbanding metrik RPL lain, ContikiOS dan COOJA simulator telah digunakan. Simulasi meluas telah dijalankan dengan cara yang sistematik yang menghasilkan analisis terperinci mengenai metrik yang diperkenalkan iaitu W-metrik, kiraan penghantaran dijangkakan (ETX) dan fungsi objektif sifar (OF0) yang menggunakan kiraan hop sebagai metrik penghalaan. Analisis dan perbandingan adalah  berdasarkan lima parameter prestasi, iaitu throughput, nisbah penghantaran paket (PDR), latency, panjang panjang antrian, dan penggunaan kuasa. Hasil simulasi menunjukkan bahawa W-metrik yang diperkenalkan mempunyai prestasi yang lebih baik berbanding dengan metrik RPL lain berkaitan dengan parameter prestasi yang dinyatakan di atas. Pada masa yang sama, hasil menunjukkan bahawa prestasi latency W-metrik adalah setanding dengan metrik penghalaan RPL yang lain. Dalam simulasi sampel 500 saat dengan 25 nod dan dengan nod yang menghantar paket secara berkala ke akar rangkaian pada kadar 1 paket setiap 4 saat, W-metrik menunjukkan keluaran yang sangat efisien iaitu 5.16 kbps, peningkatan sebanyak 8.2% berbanding ETX. Keputusan menunjukkan bahawa ia mempunyai nisbah penghantaran paket 93.3%, yang lebih tinggi berbanding 83.3% untuk ETX dan 74.2% untuk OF0. Purata panjang giliran 0.48 packet menunjukkan peningkatan 15.8% lebih baik daripada ETX. Di samping itu, ia mempamerkan penggunaan tenaga sebanyak 5.16 mW iaitu 2.1% kurang daripada ETX. Secara keseluruhan, W-metrik nampaknya menjadi alternatif yang berpotensi menggantikan ETX dan OF0 kerana ia memilih laluan yang lebih cekap dengan bekerja pada keseimbangan beban rangkaian dan dengan mempertimbangkan ciri-ciri pautan.


Underwater Acoustic Sensor Networks offer very promising solutions to monitor the aqueous environments. Due to the distinctive characteristics of UASNs, it is very challenging to design a routing protocol that can achieve maximum data delivery ratio in the network. The main challenge is the communication medium (acoustic links) that is subject to temporary attenuation and high bit error rate (BER), which limits the throughput efficiency of the Network. Besides this, another major issue is the continuous movement of nodes due to water currents and the availability of limited resources. Due to nodes mobility distance among sensor nodes and consequently, BER varies, which have a direct impact on packet size, hence, leads to high packet loss and low data delivery ratio. To achieve a high data delivery ratio, the selection of optimal packet size is of utmost importance. Consequently, the selection of next-hop forwarding node based on optimal packet size is needed. Therefore, in this paper, we propose an adaptive routing protocol named Adaptive Packet Size Selection Based Routing (APSSR) Protocol for UASNs. APSSR determines the optimal packet size adaptively based on both varying distances between sensor nodes and BER and selects the next hop based on optimal packet size and BER. The simulation results show greater network performance in terms of Network Lifetime, Data Reception Ratio at Sink node, Average Network Delay, Packet Reception Ratio, and Packets Drop Ratio


Author(s):  
Amierul Syazrul Azman ◽  
◽  
Mohamad Yusry Lee ◽  
Siva Kumar Subramaniam ◽  
Farah Shahnaz Feroz ◽  
...  

As the wireless sensor networks (WSNs) progress with newer and more advanced technologies, so do the demands for them in a growing number of applications. Precision agricultural environment monitoring is one of the most prominent applications that require feasible wireless support systems, particularly in the protection and condition control of the crops. This paper focuses on the grid nodes arrangement of WSN, considering the wide dissemination of the plantation areas in the agriculture industry. Due to the different types of sensors used and their data size, the study on the impact of the varied packet size on the performance of the small and large network has been carried out using AODV and OLSR routing protocols. No significant differences in terms of performance can be seen as the packet size is varied. However, compared to the small network, more performance issues have occured in the large network, such as more packet loss, higher throughput degradation, higher energy consumption, worse unfairness, and more overhead production. The OEG routing protocol has been proposed to enhance the network performance by reducing the strain due to the saturated traffic. When solely compared to AODV, OEG routing protocol is able to enhance the network performance with at most 27% more packet delivery ratio, 31kbps more throughput, and 0.991J lesser energy consumed in the network.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 186 ◽  
Author(s):  
Shimaa Abdel Hakeem ◽  
Anar Hady ◽  
HyungWon Kim

The Advanced Metering Infrastructure (AMI) is one of the Smart Grid (SG) applications that used to upgrade the current power system by proposing a two-way communication system to connect the smart meter devices at homes with the electric control company. The design and deployment of an efficient routing protocol solution for AMI systems are considered to be a critical challenge due to the constrained resources of the smart meter nodes. IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was recently standardized by the IETF and originally designed to satisfy the routing requirements of lossy and low power networks like wireless sensors (WSN). We have two kinds of AMI applications, on one hand AMI based WSN and on the other hand AMI based PLC communication. In this paper, we proposed a real and simulated implementation of RPL behavior with proper modifications to support the AMI based WSN routing requirements. We evaluate RPL performance using 140 nodes from the wireless sensor testbed (IoT-LAB) and 1000 nodes using Cooja simulator measure RPL performance within medium and high-density networks. We adopted two routing metrics for path selection: First one is HOP Count (HC) and the second is Expected Transmission Unit (ETX) to evaluate RPL performance in terms of packet delivery ratio; network latency; control traffic overhead; and power consumption. Our results illustrate that routes with ETX calculations in low and medium network densities outperform routes using HC and the performance decreases as the network becomes dense. However, Cooja implementation results provides an average reasonable performance for AMI with high-density networks; still many RPL nodes suffering from high packet loss rates, network congestion and many retransmissions due to the selection of optimal paths with highly unreliable links.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5486 ◽  
Author(s):  
Sankar Sennan ◽  
Sathiyabhama Balasubramaniyam ◽  
Ashish Kr. Luhach ◽  
Somula Ramasubbareddy ◽  
Naveen Chilamkurti ◽  
...  

Energy conservation is one of the most critical problems in Internet of Things (IoT). It can be achieved in several ways, one of which is to select the optimal route for data transfer. IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) is a standardized routing protocol for IoT. The RPL changes its path frequently while transmitting the data from source to the destination, due to high data traffic in dense networks. Hence, it creates data traffic across the nodes in the networks. To solve this issue, we propose Energy and Delay Aware Data aggregation in Routing Protocol (EDADA-RPL) for IoT. It has two processes, namely parent selection and data aggregation. The process of parent selection uses routing metric residual energy (RER) to choose the best possible parent for data transmission. The data aggregation process uses the compressed sensing (CS) theory in the parent node to combine data packets from the child nodes. Finally, the aggregated data transmits from a downward parent to the sink. The sink node collects all the aggregated data and it performs the reconstruction operation to get the original data of the participant node. The simulation is carried out using the Contiki COOJA simulator. EDADA-RPL’s performance is compared to RPL and LA-RPL. The EDADA-RPL offers good performance in terms of network lifetime, delay, and packet delivery ratio.


2019 ◽  
Vol 8 (3) ◽  
pp. 70-93 ◽  
Author(s):  
S.Sankar ◽  
P.Srinivasan

Increasing the lifetime of low power and lossy networks (LLN) is a major challenge, as the nodes have low power, low memory, and low processing capacity. Clustering is a technique used to minimize the energy consumption of sensor nodes. This article proposes a fuzzy sets-based cluster routing protocol (FC-RPL) to extend the network lifetime in LLN. It has three processes: cluster formation, cluster head selection, and cluster head parent selection. It forms the clusters based on the Euclidean distance. It applies the fuzzy set over the metrics residual energy, number of neighbors and centrality, to select the cluster head in each cluster. The cluster head node chooses the best parent node in the DODAG for data transfer. The simulation is performed using COOJA simulator. The simulation result shows that FC-RPL extends the network lifetime by 15-25% and increases the packet delivery ratio by 2-6%.


Sign in / Sign up

Export Citation Format

Share Document