scholarly journals Modification of Bituminous Mixture using Polyethylene Granules

Pavement performance is generally influenced by traffic, moisture, and quality of construction and maintenance. Deterioration on road surface can develop due to one or combination of these factors. In order to improve pavement performance, the modification of bituminous mixture for road surface can be achieved by adding additives or modifiers in the mix. This study presents the utilization of two types of polyethylene (PE): high density polyethylene (HDPE) and low density polyethylene (LDPE), a plastic waste products as an additive to enhance the properties of bituminous mixture. PE has been extensively used in industrial and domestic applications due to its low-cost, lightweight and durable properties. Wearing course samples of control and modified mixes were prepared using Marshall mix design method and according to Standard Specification for Road Works as guidelines. Three types of HDPE/LDPE blends with ratios of 75/25, 50/50 and 25/75 have been prepared and tested. It was found that polyethylene modified bituminous mixes show significant increment in Marshall stability and lower optimum bitumen content (OBC) in comparison to unmodified mix, where equal blend of HDPE/LDPE (50/50) shows a better Marshall properties. This shows that an addition of polyethylene in bituminous mix can withstand higher traffic loading with lower bitumen content.

2021 ◽  
Vol 2129 (1) ◽  
pp. 012039
Author(s):  
Mohd Badrul Hisyam Ab Manaf ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Rafiza Abdul Razak ◽  
Muhammad Munsif Ahmad ◽  
Mustaqqim Abdul Rahim ◽  
...  

Abstract Fly Ash (FA) is one of the sustainable materials to substitute Ordinary Portland Cement (OPC) was found commercialized in construction field but the usage in HMA pavement is limited. Thus, this study is important to promote FA as a sustainable filler instead of using OPC to reduce greenhouse gases. The primary aim is to investigate the Marshall Stability of HMA that incorporating of OPC and FA as filler. In addition, Optimum Bitumen Content (OBC) determination also conducted in this study. Marshall Stability test was conducted based on ASTM 2006 for both mixtures. The parameters gained from the test are the stability, flow, air void in mix (VIM), void filled bitumen (VFB) and stiffness being used to OBC. The OBC for HMA with OPC filler obtained is 5.06% meanwhile for HMA with FA is 4.79%. All Marshall Parameters was complied with of Malaysia Public Work Department (PWD) Standard for both mixtures. The HMA with FA filler give better results for all parameters. Based on OBC percentage, usage of asphalt binder was reduced at 0.29%. Thus, it was more economical if using FA compared with OPC as a filler. Furthermore, HMA with FA filler have better stability and strength as well as lesser deformation with HMA with OPC filler. For the overall, FA have huge potential in substituting other mineral filler to produce better quality of asphalt pavement.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Ashiru Mohammed ◽  
Ibrahim Aliyu ◽  
Tasiu A. Sulaiman ◽  
Hussaini A. Umar ◽  
Yasir Jubril

This study was conducted to access the performance of asphalt concrete produced with coal bottom ash as partial replacement of cement in the mineral filler. The Marshal Mix design method of hot mix asphalt (HMA) samples preparation and testing was adopted. Fifteen (15) samples of HMA compacted and used for volumetric and stability testing at a varying percentage of bitumen contents (5.0, 5.5, 6.0, 6.5, and 7.0%,) following the Asphalt Institute and Nigeria General Specification for Road and Bridges (NGSRB) approach for determining optimum bitumen content (OBC). An Optimum bitumen content of 5.5 % was obtained and used throughout the study. Another set of 15 samples of the HMA were prepared and compacted at varying percentage replacement of cement with CBA in the order of 15, 20, 25, 30, and 35% by volume of cement to determine the optimum dosage of the coal bottom ash that will satisfy the requirements for the strength and durability of wearing course of flexible pavement. The Marshall Stability, flow, and the volumetric properties test results obtained indicated that the samples prepared with 25% CBA as filler with OBC of 5.5% satisfied the requirements of the NGSRB for wearing course of flexible pavement. Hence, the addition of up to 25% CBA by volume of cement in asphalt concrete can reduce the consumption of cement and provide a proper means of CBA disposal.Keywords- Coal Bottom Ash (CBA), Marshal Stability, Marshal Flow, Mineral filler, Optimum Bitumen Content (OBC)


2013 ◽  
Vol 20 (3) ◽  
pp. 91-106 ◽  
Author(s):  
Rachel Pizarek ◽  
Valeriy Shafiro ◽  
Patricia McCarthy

Computerized auditory training (CAT) is a convenient, low-cost approach to improving communication of individuals with hearing loss or other communicative disorders. A number of CAT programs are being marketed to patients and audiologists. The present literature review is an examination of evidence for the effectiveness of CAT in improving speech perception in adults with hearing impairments. Six current CAT programs, used in 9 published studies, were reviewed. In all 9 studies, some benefit of CAT for speech perception was demonstrated. Although these results are encouraging, the overall quality of available evidence remains low, and many programs currently on the market have not yet been evaluated. Thus, caution is needed when selecting CAT programs for specific patients. It is hoped that future researchers will (a) examine a greater number of CAT programs using more rigorous experimental designs, (b) determine which program features and training regimens are most effective, and (c) indicate which patients may benefit from CAT the most.


Author(s):  
N. SATHEESHKANNA

Waste generated from industries and from various places around us not only contains rubber or plastics but contains lot many harmful pollutants whichare hazardous if disposed continuously in open and leftto degrade in our environment.Our project aims to study properties of different materials which may help in utilising the waste as well as improve the quality of roads and make them efficient, stable, durable and long lasting. Some of the materials that we have studied and considered to be tested in the partial replacement of bitumen are PMB and CRMB.


Author(s):  
T. N. Antipova ◽  
D. S. Shiroyan

The system of indicators of quality of carbon-carbon composite material and technological operations of its production is proved in the work. As a result of the experimental studies, with respect to the existing laboratory equipment, the optimal number of cycles of saturation of the reinforcing frame with a carbon matrix is determined. It was found that to obtain a carbon-carbon composite material with a low cost and the required quality indicators, it is necessary to introduce additional parameters of the pitch melt at the impregnation stage.


2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


Biomedicines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Borja Sanz ◽  
Ane Albillos Sanchez ◽  
Bonnie Tangey ◽  
Kerry Gilmore ◽  
Zhilian Yue ◽  
...  

Collagen is a major component of the extracellular matrix (ECM) that modulates cell adhesion, growth, and migration, and has been utilised in tissue engineering applications. However, the common terrestrial sources of collagen carry the risk of zoonotic disease transmission and there are religious barriers to the use of bovine and porcine products in many cultures. Marine based collagens offer an attractive alternative and have so far been under-utilized for use as biomaterials for tissue engineering. Marine collagen can be extracted from fish waste products, therefore industry by-products offer an economical and environmentally sustainable source of collagen. In a handful of studies, marine collagen has successfully been methacrylated to form collagen methacrylate (ColMA). Our work included the extraction, characterization and methacrylation of Red Snapper collagen, optimisation of conditions for neural cell seeding and encapsulation using the unmodified collagen, thermally cross-linked, and the methacrylated collagen with UV-induced cross-linking. Finally, the 3D co-axial printing of neural and skeletal muscle cell cultures as a model for neuromuscular junction (NMJ) formation was investigated. Overall, the results of this study show great potential for a novel NMJ in vitro 3D bioprinted model that, with further development, could provide a low-cost, customizable, scalable and quick-to-print platform for drug screening and to study neuromuscular junction physiology and pathogenesis.


2020 ◽  
Vol 6 (3) ◽  
pp. 522-525
Author(s):  
Dorina Hasselbeck ◽  
Max B. Schäfer ◽  
Kent W. Stewart ◽  
Peter P. Pott

AbstractMicroscopy enables fast and effective diagnostics. However, in resource-limited regions microscopy is not accessible to everyone. Smartphone-based low-cost microscopes could be a powerful tool for diagnostic and educational purposes. In this paper, the imaging quality of a smartphone-based microscope with four different optical parameters is presented and a systematic overview of the resulting diagnostic applications is given. With the chosen configuration, aiming for a reasonable trade-off, an average resolution of 1.23 μm and a field of view of 1.12 mm2 was achieved. This enables a wide range of diagnostic applications such as the diagnosis of Malaria and other parasitic diseases.


Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 108
Author(s):  
Giancarla Alberti ◽  
Camilla Zanoni ◽  
Vittorio Losi ◽  
Lisa Rita Magnaghi ◽  
Raffaela Biesuz

This review illustrates various types of polymer and nanocomposite polymeric based sensors used in a wide variety of devices. Moreover, it provides an overview of the trends and challenges in sensor research. As fundamental components of new devices, polymers play an important role in sensing applications. Indeed, polymers offer many advantages for sensor technologies: their manufacturing methods are pretty simple, they are relatively low-cost materials, and they can be functionalized and placed on different substrates. Polymers can participate in sensing mechanisms or act as supports for the sensing units. Another good quality of polymer-based materials is that their chemical structure can be modified to enhance their reactivity, biocompatibility, resistance to degradation, and flexibility.


Sign in / Sign up

Export Citation Format

Share Document