scholarly journals AQUEOUS EXTRACT OF RED TEA PLANT (Hibiscus sabdariffa L) EFFECT ON THE LIPID PROFILE AND GLUGOSE IN MALE WHITE RABBITS EXPOSED TO OXIDATIVE STRESS

2016 ◽  
Vol 47 (1) ◽  
Author(s):  
S. O. Al-khateeb

This study aimed to investigate the of effect aqueous extract of red tea on average of glucose and lipid profile in New Zealand white male rabbits exposed to oxidative stress induced hydrogen peroxide H2O2 of drinking water for the duration 30-days. Treatment of  hydrogen peroxide 2% led alone to a significant increase (P≤0.05) in the concentration of glucose level and the concentration of total cholesterol rate and level of triglycerides and a significant decrease (P ≤ 0.05) in the level of estimating the concentration of high-density cholesterol in the blood serum lipoproteins and a significant increase in the concentration of lipoproteins and very low-lying density cholesterol was significantly higher in atherogenic indices the first and second, respectively, in the blood of animals treated with hydrogen peroxide compared to the control group. It got a significant decrease (P≤0.05) in the concentration of glucose and cholesterol rate and triglycerides and in the concentration of lipoproteins and sessile very density cholesterol and in the atherogenic indices first and second respectively, as happened morally rise in the level of estimating the concentration of high-density lipoproteins cholesterol in the labor animal blood serum aqueous extract of red tea (125 mg / kg of body weight) added all of the hydrogen peroxide compared with the group treated rabbits hydrogen peroxide alone. It is concluded from this current study, the important role of the Red tea as an antioxidant through curb the harmful effects of some types of free radicals within the body and thus improve the most changes biochemical changes in the male albino rabbits  after exposure to oxidative stress Induced by hydrogen Peroxide 2% .

Author(s):  
Eman A. Al-Rekabi ◽  
Dheyaa K. Alomer ◽  
Rana Talib Al-Muswie ◽  
Khalid G. Al-Fartosi

The present study aimed to investigate the effect of turmeric and ginger on lipid profile of male rats exposed to oxidative stress induced by hydrogen peroxide H2O2 at a concentration of 1% given with consumed drinking water to male rats. Methods: 200 mg/kg from turmeric and ginger were used, and the animals were treatment for 30 days. Results: the results showed a significant increase in cholesterol, triglycerides, low density lipoprotein (LDL), very low density lipoprotein (VLDL), whereas it explained a significant decrease in high density lipoprotein (HDL) of male rats exposed to oxidative stress when compared with control group. the results showed a significant decrease in cholesterol, triglycerides, (LDL), (VLDL), whereas it explained a significant increase in (HDL) of rats treated with turmeric and ginger at dose 200 mg/kg when compared with male rats exposed to oxidative stress.


2019 ◽  
Vol 19 (8) ◽  
pp. 1148-1156 ◽  
Author(s):  
Ifeanacho Mercy Onuekwuzu ◽  
Ikewuchi Catherine Chidinma ◽  
Ikewuchi Jude Chigozie

Objective:Traditionally prepared infusions and decoctions are commonly used in the management of diabetes mellitus, in southern Nigeria; one of such is the aqueous extract of the sclerotia of Pleurotus tuberregium (“usu” milk). In this study, the effects of the extract on the body weights, tissue/ organ weights, fasting blood glucose, blood/plasma lipid profiles and atherogenic indices were investigated in normal and alloxan-induced diabetic rabbits.Methods:Diabetes mellitus was induced by the injection of alloxan (120 mg/kg body weight) via the marginal ear vein. The extract was administered orally at 100, 200 and 300 mg/kg to normal and diabetic rabbits; while metformin was administered at 50 mg/kg. The crude extract was analyzed by gas chromatography, coupled to flame ionization detector.Results:Thirty-one known flavonoids were detected, consisting mainly of isoquercetin (28.5%), luteolin (24.3%), quercetin (18.8%) and kaempferol (11.3%). Sitosterol (82.0%) and stigmasterol (12.5%) were the most abundant of the seven phytosterols detected. Compared to the diabetic control, the treatment significantly (p<0.05) lowered the weights of the kidney and liver, as well as the levels of blood glucose and triglyceride, plasma VLDL, LDL and non-HDL cholesterol, atherogenic index of plasma, cardiac risk ratio, atherogenic coefficient and Castelli’s risk index II. It, however, significantly (p<0.05) increased plasma HDL cholesterol, without significantly affecting blood total cholesterol levels.Conclusion:This study showed that the extract was hypoglycemic, and improved lipid profile and atherogenic indices, thus highlighting its cardioprotective potential, thereby supporting its use in the management of diabetes mellitus.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 557
Author(s):  
Stephanie D. Burr ◽  
James A. Stewart

Cardiovascular disease, specifically heart failure, is a common complication for individuals with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix (ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accumulate within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses. Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate this cascade, we used genetically different cardiac fibroblasts from non-diabetic, diabetic, non-diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudosubstrate PKC-ζ). We examined changes in expression of proteins implicated as markers for myofibroblasts (α-SMA) and inflammation/oxidative stress (NF-κB and SOD-1). In addition, oxidative stress was also assessed by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the AGE/RAGE cascade to promote and maintain α-SMA expression in cardiac fibroblasts. Moreover, Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF-κB expression as well as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally, knocking down Rap1a expression resulted in an increase in SOD-1 expression suggesting that Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade. These results demonstrated that Rap1a contributes to the myofibroblast population within the heart via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular complications attributed to AGE/RAGE signaling.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3262
Author(s):  
Nada Oršolić ◽  
Damir Sirovina ◽  
Dyana Odeh ◽  
Goran Gajski ◽  
Vedran Balta ◽  
...  

Diabetic dyslipidemia and hyperglycemia contribute to excessive reactive oxygen species (ROS) production, leading to deleterious complications, such as nephropathy, atherosclerosis and cardiac dysfunction, and target major organs in the body. The aim of this study was to investigate the effect of caffeic acid (CA) on mouse weight and survival, serum level of fasting blood glucose (FBG), serum lipid parameters and atherogenic indices, oxidative damage in blood, liver and kidney tissue, pathophysiological changes and their function markers in healthy and alloxan-induced type 1 diabetic mice. Diabetes was induced in mice with a single intravenous injection of alloxan (75 mg kg−1). Two days later, CA (50 mg kg−1) was given intraperitoneally for seven days in diabetic mice. Diabetes affected glucose level, lipid profile, hematological and biochemical parameters, induced DNA damage and apoptotic/necrotic death in whole blood cells, liver and kidney, leading to weight loss and a decreased lifespan. CA treatment of diabetic mice revealed a protective effect on the liver and kidney, hypoglycemic and hypolipidemic properties and high protection against atherogenic outcomes. The obtained results suggest that CA is a safe and potent agent against diabetes that acts as an effective antioxidant in reducing serum glucose, lipid profile and atherogenic indices, leading to increased lifespan in mice.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Tomas Vaisar ◽  
Erica Couzens ◽  
Arnold Hwang ◽  
Andrew N Hoofnagle ◽  
Carolyn E Barlow ◽  
...  

Aim: One of the hallmarks of diabetes is impaired endothelial function. High density lipoproteins (HDL) can exert protective effects on endothelium stimulating NO production and protecting from inflammation. Previous study suggested that HDL in obese people with diabetes and metabolic syndrome and markedly low HDL-C lost endothelial protective function. We aimed to test whether type 2 diabetes impairs HDL endothelium protective functions in people with otherwise normal lipid profile. Methods: In a case-control study (n=40 per group) nested in the Cooper Center Longitudinal Study, we isolated HDL and measured its ability to stimulate activity of endothelial nitric oxide synthase (eNOS; phosphorylation of Ser1177) in endothelial cells and the ability of HDL to suppress inflammatory response of endothelial cells (NFkB activation). Additionally, we also measured by LCMS levels of sphingosine-1-phosphate (S1P) and plasma P-selectin by ELISA. Results: The HDL in people with type 2 diabetes lost almost 40% of its ability to stimulate eNOS activity (P<0.001) and 20% of its ability to suppress inflammation in endothelial cells ( P <0.001) compared to non-diabetic controls despite similar BMI and lipid profile (HDL-C, LDL-C, TC, TG).The ability of HDL to stimulate eNOS activity was negatively associated with plasma levels of P-selectin, an established marker of endothelial dysfunction (r=–0.32, P <0.001). Furthermore, sphingosine-1-phosphate (S1P) levels were decreased in plasma of people with diabetes ( P =0.017) and correlated strongly with HDL-mediated eNOS activation. Conclusions: Collectively, our data suggest that HDL in individuals with type 2 diabetes loses its ability to maintain proper endothelial function independent of HDL-C, perhaps due to loss of S1P, and may contribute to development of diabetic complications.


2018 ◽  
Vol 10 (03) ◽  
pp. 276-282 ◽  
Author(s):  
Hayder M. Al-Kuraishy ◽  
Ali I. Al-Gareeb ◽  
Thabat J. Al-Maiahy

ABSTRACT BACKGROUND: Preeclampsia (PE) is a systemic pregnancy-related disorder characterized by hypertension, proteinuria, and edema. Free radicals seem to play an important role in the induction of endothelial dysfunction in PE. AIM: The aim of the present study was to investigate serum levels of nitric oxide (NO), peroxynitrite (ONOO−), paraoxonase (PON-1), malondialdehyde (MDA), and lipid profile in preeclamptic patients compared to the women with normal pregnancy. MATERIALS AND METHODS: A total of 68 pregnant women were recruited. They were divided into two groups - Group A, 40 women were a newly diagnosed with PE and Group B, 28 women with normal pregnancy. Anthropometric measurements including body mass index and blood pressure in accordance with biochemical measurements including NO, ONOO−, PON-1, MDA, and lipid profile were done for preeclamptic pregnant women compared to the controls. RESULTS: Pregnant women with pre-eclampsia illustrated insignificant differences in the age (31.22±2.87) compared to the age of control P > 0.05. There were significant changes in the body mass index (BMI) , type of delivery and smoking status of pregnant women with pre-eclampsia compared to the control P < 0.05. Both systolic and diastolic blood pressures were high in pregnant women with pre-eclampsia compared to the control P < 0.01. PON-1 and NO serum levels were significantly decreased (P < 0.01) while ONOO− and MDA serum levels were significantly increased in PE compared to the women with normal pregnancy. Conclusions: This study concluded that PE is associated with the augmentation of oxidative stress and reduction of endogenous antioxidant capacity regarding PON-1.


2020 ◽  
pp. 16-25
Author(s):  
Godswill J. Udom ◽  
Jude E. Okokon ◽  
John A. Udobang ◽  
Daniel N. Obot ◽  
Nkechi J. Onyeukwu

Dr Iguedo Goko Cleanser® is a polyherbal mixture promoted as an effective herbal remedy for numerous diseases. Study aimed to evaluate the toxicity concern of the polyherbal mixture (PHM) on lipid profile and oxidative status in Wistar rats of both gender. Acute toxicity study was conducted using modified method of Lorke. Thirty Wistar rats of bother gender were randomly divided into six groups (5/group) and exposed to the polyherbal mixture for 60 days via oral gavage. Control groups (1 and 4) received 10 mL/kg distilled water, while groups 2-3 and 5-6 received 476.24 and 158.75 mg/kg body weight of Dr Iguedo Goko Cleanser® respectively. On 62nd day, animals were sacrificed under diethyl ether anaesthesia; blood samples were collected by cardiac puncture for biochemical analysis. PHM significantly (p < 0.05) increased high density lipoproteins (HDL) levels in male rats as well as high dose female rats relative to control. However, low dose female rats recorded low HDL levels relative to control. Total cholesterol, triglycerides, low density and very low density lipoprotein levels were significantly reduced in all test groups relative to controls. The low dose males (LDM) had reduced serum glutathione peroxidase (GPX) activity; while increased and decreased GPX and glutathione (GSH) activities were respectively recorded for female rats. Male rats had dose-dependent increase in malondialdehyde. The recorded reductions in serum lipids suggest that the polyherbal mixture may have hypolipidemic potentials. While the increased malondialdehyde as well as decreased GPX and GSH indicate lipid peroxidation and oxidative stress inducing potentials of the PHM. Despite the positive modulation on lipid profile, findings suggest utmost caution on chronic use as its oxidative stress inducing potentials is considerable.


2021 ◽  
Author(s):  
Tadeusz J Kaczynski ◽  
Elizabeth D Au ◽  
Michael H Farkas

Nuclear retention is a mechanism whereby RNA transcripts are held in the nucleus to maintain a proper nuclear-to-cytoplasmic balance or as a stockpile for use in responding to stimuli. Many mechanisms are employed to determine whether transcripts are retained or exported to the cytoplasm, though the extent to which tissue- or cell-type, stressors, or disease pathogenesis affect this process remains unclear. As the most biochemically active tissue in the body, the retina must mitigate endogenous and exogenous stressors to maintain cell health and tissue function. Oxidative stress, believed to contribute to the pathogenesis, or progression, of age-related macular degeneration (AMD) and inherited retinal dystrophies (IRDs), is produced both internally from biochemical processes, as well as externally from environmental insult. To evaluate the effect of oxidative stress on transcript localization in the retinal pigment epithelium (RPE), we performed poly-A RNA sequencing on nuclear and cytoplasmic fractions from induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) cells exposed to hydrogen peroxide, as well as untreated controls. Under normal conditions, the number of mRNA transcripts retained in the nucleus exceeded that found in studies of other tissues. Further, the nuclear-to-cytoplasmic ratio of transcripts is altered following oxidative stress, as is the retention of genes associated with AMD, IRDs, and those important for RPE physiology. These results provide a retention catalog of all expressed mRNA in iPSC-RPE under normal conditions and after exposure to hydrogen peroxide, offering insight into one of the potential roles oxidative stress plays in the progression of visual disorders.


Sign in / Sign up

Export Citation Format

Share Document