Uji Aktivitas Antihiperurisemia Ekstrak Etanol Kulit Buah Manggis (Garcinia mangostana L.) Dan BUAH ASAM GELUGUR (Garcinia atroviridis Griff. ex. T. Anders.) secara In Vitro

2015 ◽  
Vol 4 (2) ◽  
pp. 66
Author(s):  
Dira Dira ◽  
Eka Fitrianda ◽  
Novita Sari
Keyword(s):  
Author(s):  
Michael Russelle Alvarez ◽  
Paolo Robert Bueno ◽  
Raymond Oliver Cruz ◽  
Richard Macapulay ◽  
Francis Jayson Vallesfin ◽  
...  

Plant-derived digestive enzyme inhibitors particularly those targeted to carbohydrate metabolism has been the focus of recent studies as natural supplements for weight control and diabetes. The present study explores the salivary amylase inhibition activity of Garcinia mangostana (Linn.) pericarp extracts and Carica papaya (Linn.) leaf extracts and fractions, as well as perform phytochemical screening and quantification, and thin layer – and high performance liquid chromatographic profiling. ­Results show that crude extracts and purified fractions were able to inhibit salivary amylase, with C. papaya fraction 1 being the most active at 30.89% inhibition. Phytochemical screening of all extracts tested ­positive for tannins, glycosides, phenolics, flavonoids and alkaloids. Quantification of phenolics showed that extracts contained high levels of phenolics, with C. papaya crude extract having the highest content with 219.0±12.7 mg GAE/g extract followed by G. mangostana crude extract with 247.1±18.0 mg GAE/g extract. Quantification of total flavonoids also showed C. papaya crude extract to contain the highest content with 55.12±0.679 mg QE/g extract. All extracts contained negligible alkaloid content, though. HPLC and TLC profiling showed several peaks and bands, when viewed in 210 nm and UV light, respectively. These results demonstrate in vitro the salivary amylase inhibitory activity of both plants and their potential as antidiabetic drug candidates; however, further studies need to be done, like isolation and structure elucidation of active components and toxicity assays. Keywords: Amylase inhibition, phytochemical quantification, Carica papaya, Garcinia mangostana


2019 ◽  
Vol 2 (1) ◽  
pp. 9-13
Author(s):  
Zaim Anshari ◽  
Chrismis Novalinda Ginting ◽  
Linda Chiuman ◽  
Yuliani Mardiati Lubis

This study aims to determine whether mangosteen rind extract (in the form of ethanol extract/EE) can be used as an anti-diarrhea drug after compared with other anti-diarrhea substances in three experimental groups. This research is an in vitro experimental study using adult male guinea pigs weighing 400-600 gr through the standard method of Magnus with the Latin square controlled experiment design. The study was conducted at the Pharmacology and Toxicology Laboratory of the Faculty of Pharmacy, University of North Sumatra. The results showed that the contraction of ileum in Ach with Atp + Ach compared the difference in contraction of ileum Ach with EE + Ach showed the difference in difference between the two contractions of the ileum was significant, the contraction of ileum in His with Dip + His compared indifference in contraction of ileum His with EE + His showed a difference indifference. the two ileal contractions are significant, the ileal contraction in the bar with Papa + Bar compared to the difference between the ileum bar contraction with EE + Bar shows no difference in the difference between the two ileum contractions. The conclusion is that the Mangosteen Skin Ethanol Extract works similarly to Papaverine Hydrochloride which is an antidiarrheal drug used to relax smooth muscles so that it can also make blood vessels dilate by relaxing smooth muscles in the walls of blood vessels.


2019 ◽  
Vol 7 (1) ◽  
pp. 18
Author(s):  
Dalhar Hakiki ◽  
Latief Mooduto ◽  
Ketut Suardita ◽  
Dian Agustin Wahjuningrum

Background:Enterococcus faecalis (E. faecalis) is a microorganism that is commonly found in endodontic failure treatment, this due to several characteristics of E.faecalis which has the capabillity to living in environments with high salt levels, high temperature, and pH broad spectrum. Bacteria in biofilms form is one of the adaptive process that allows bacteria to survive in an environment with low nutrients in the root canals. Bacteria in biofilms form have different characteristics from planktonic form, resistance to phagocytic cells and drugs, which can effect to persistent infection. Mangosteen (Garcinia mangostana) has many benefits, especially on the pericarp of the fruit contains alkaloids, tannins, phenolics, flavonoids, and triterpenoids. Flavonoids are the largest group of phenolic compounds that have a nature effectively inhibit the growth of viruses, bacteria, and fungi. Purpose:Purpose of this study wasto find out the role of the antibiofilm of the flavonoid in garcinia mangostana pericarp against E. faecalis bacterial biofilm. Methods:Laboratory experimental in-vitro with post test only group design. The method used is microtitter plate biofilm assay and continued with the readings use Elisa reader at a wavelength of 595 nm. Results:Flavonoids mangosteen pericarp effective as antibiofilm E.faecalis bacteria at a concentration of 12.5%. Conclusion:The study showed that flavonoids from mangosteen pericarp has antibiofilm activity against E. faecalis bacterial biofilm.


2019 ◽  
Vol 9 (23) ◽  
pp. 5235 ◽  
Author(s):  
Nasrul Wathoni ◽  
Nia Yuniarsih ◽  
Arief Cahyanto ◽  
Muhctaridi Muhctaridi

Many antiseptic drugs, local anaesthetics, and corticosteroids have been used for effective therapy of recurrent aphthous stomatitis (RAS). However, these drugs have harmful side effects. α-mangostin (α-M), a main compound of mangosteen (Garcinia mangostana L.) peel, has been known as a wound healing agent. In addition, hydrogel film as dressings designed to separate mucosal lesions from the oral environment, and improve the effectiveness of RAS therapy. The purpose of this study was to develop α-M hydrogel film based chitosan–alginate (ChAlg/α-M HF) for RAS. The in silico study by Discovery studio visualizer and AutoDock confirmed that hydrogen bonding between Ch, Alg, and α-M occurred. The results of physicochemical characterizations by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) indicated that the ChAlg/α-M HF had a lower crystalline form compared to pure α-M. In addition, ChAlg/α-M HF significantly improved the swelling ratio and tensile strength compared to that of ChAlg HF. Moreover, the existence of Alg increased the degradability of Ch, and closely related to the release of α-M from ChAlg HF. The in vitro release study confirmed that the release of α-M from ChAlg/α-M HF was the Fickian diffusion model. Finally, the mucoadhesive study revealed that ChAlg/α-M HF had a good mucoadhesive property. These results suggest that hydrogel film-based chitosan–alginate have the potential as carriers of α-M for RAS therapy.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Youngmun Lee ◽  
Sunyoung Kim ◽  
Yeonsoo Oh ◽  
Young-Mi Kim ◽  
Young-Won Chin ◽  
...  

Among a series of xanthones identified from mangosteen, the fruit of Garcinia mangostana L. (Guttifereae), α- and γ-mangostins are known to be major constituents exhibiting diverse biological activities. However, the effects of γ-mangostin on oxidative neurotoxicity and impaired memory are yet to be elucidated. In the present study, the protective effect of γ-mangostin on oxidative stress-induced neuronal cell death and its underlying action mechanism(s) were investigated and compared to that of α-mangostin using primary cultured rat cortical cells. In addition, the effect of orally administered γ-mangostin on scopolamine-induced memory impairment was evaluated in mice. We found that γ-mangostin exhibited prominent protection against H2O2- or xanthine/xanthine oxidase-induced oxidative neuronal death and inhibited reactive oxygen species (ROS) generation triggered by these oxidative insults. In contrast, α-mangostin had no effects on the oxidative neuronal damage or associated ROS production. We also found that γ-mangostin, not α-mangostin, significantly inhibited H2O2-induced DNA fragmentation and activation of caspases 3 and 9, demonstrating its antiapoptotic action. In addition, only γ-mangostin was found to effectively inhibit lipid peroxidation and DPPH radical formation, while both mangostins inhibited β-secretase activity. Furthermore, we observed that the oral administration of γ-mangostin at dosages of 10 and 30 mg/kg markedly improved scopolamine-induced memory impairment in mice. Collectively, these results provide both in vitro and in vivo evidences for the neuroprotective and memory enhancing effects of γ-mangostin. Multiple mechanisms underlying this neuroprotective action were suggested in this study. Based on our findings, γ-mangostin could serve as a potentially preferable candidate over α-mangostin in combatting oxidative stress-associated neurodegenerative diseases including Alzheimer’s disease.


Author(s):  
Akash Kumaran ◽  
Prabhu Sukumaran

Background: The aqueous crude extract of Garcinia mangostana fruit pericarp was already proven to contain antiurolithiatic property. Based on this previous study the current study was focused on analysing the anti-urolithiatic property of α- mangostin, a xanthone polyphenol isolated from the fruit pericarp of G. manostana, which has not been tested for its anti-urolithiatic property till now. Objective: The aim of this present study is to evaluate the anti-urolithiatic property of the isolated α- mangostin from G. mangostana fruit pericarp using in silico, in vitro and in vivo analysis. Study Design: Antiurolithiatic activity of α- mangostin through Molecular docking study à In vitro S.S.M model study à Animal studies. Place and Duration: Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur, Sriperumbudur Tk, Kancheepuram Dt, TN-602117, India. Materials and Methods: In silico Molecular docking of α- mangostin with Kidney stone forming proteins- Xanthine dehydrogenase (Xdh), Oxalate oxidase and Tamm-Horesefall Protein (THP) were performed using AutoDock 4.0 and was visualised in Discovery studio software. In vitro Simultaneous Static flow Model (S.S.M) was performed to investigate its Antiurolithiatic property against Calcium Oxalate (CaOx) and Calcium Phosphate (CaP) crystals. Based on the in silico and in vitro analysis, the study was extrapolated to Ethylene Glycol (EG) induced urolithiasis rat models. The animal study was performed with 36 Albino Wistar rats which were divided into 6 groups. All group except group I received EG (0.75% in drinking water) for the induction of Urolithiasis for 28 days under curative regimen. Group III was administered orally with Cystone (750 mg/kg) from 15th to 28thday. Group IV to VI was administered orally with GMPE (300 mg/kg, 500 mg/kg and 750 mg/kg) from 15thto 28th day. Results: Molecular Docking studies showed an inhibitory interaction of α- mangostin with oxalate oxidase, Xdh and THP with binding affinity of -4.47, -4.00 and -3.41 Kcal/mol respectively. S.S.M showed 54.71% inhibition for CaOx crystals and 62.21% inhibition of CaP crystals. The animal studies showed significant results in reduction of serum calcium (P<0.01), serum phosphate (P<0.01), urine calcium(P<0.001) and urine phosphate(P<0.01). Conclusion: Thus, α- mangostin proved to be potent Anti-urolithiatic agent by reducing and disintegrating the urinary crystals.


2022 ◽  
Vol 15 (1) ◽  
pp. 84
Author(s):  
Mario Abate ◽  
Cristina Pagano ◽  
Milena Masullo ◽  
Marianna Citro ◽  
Simona Pisanti ◽  
...  

The fruit of Garcinia mangostana (mangosteen) is known in ancient traditional Asian medicine for its antioxidant, anti-inflammatory, immunomodulatory and anticancer activities. These effects are mainly due to the action of polyphenols known as xanthones, which are contained in the pericarp of the fruit. In recent years, there has been a growing interest from pharmaceutical companies in formulating new topicals based on mangosteen full extracts to prevent skin aging. However, the molecules responsible for these effects and the mechanisms involved have not been investigated so far. Here, the arils and shells of Garcinia mangostana were extracted with chloroform and methanol, and the extracts were further purified to yield 12 xanthone derivatives. Their effects were evaluated using in vitro cultures of human epidermal keratinocytes. After confirming the absence of cytotoxicity, we evaluated the antioxidant potential of these compounds, identifying mangostanin as capable of both protecting and restoring oxidative damage induced by H2O2. We showed how mangostanin, by reducing the generation of intracellular reactive oxygen species (ROS), prevents the activation of AKT (protein kinase B), ERK (extracellular signal-regulated kinase), p53, and other cellular pathways underlying cell damage and apoptosis activation. In conclusion, our study is the first to demonstrate that mangostanin is effective in protecting the skin from the action of free radicals, thus preventing skin aging, confirming a potential toward its development in the nutraceutical and cosmeceutical fields.


Sign in / Sign up

Export Citation Format

Share Document