scholarly journals Effects of PASP-KT-NAA on Photosynthesis and Antioxidant Enzyme Activities of Maize Seedlings under Low Temperature Stress

2013 ◽  
Vol 38 (2) ◽  
pp. 352-359 ◽  
Author(s):  
Tian-Jun XU ◽  
Zhi-Qiang DONG ◽  
Hong-Liang LAN ◽  
Zhi-Chao PEI ◽  
Jiao GAO ◽  
...  
2018 ◽  
Vol 69 (6) ◽  
pp. 587 ◽  
Author(s):  
Yi Wang ◽  
Jing Li ◽  
Wanrong Gu ◽  
Qian Zhang ◽  
Lixin Tian ◽  
...  

The important plant growth regulator 5-aminolevulinic acid (ALA) could promote low-temperature stress tolerance of many plants; however, the underlying mechanisms remain to be elucidated. We investigated the effects of exogenously applied ALA on seedling morphology, antioxidant enzyme activity and photosynthetic capacity of maize (Zea mays L.) seedlings under low-temperature stress. Two cultivars, low-temperature-sensitive cv. Suiyu 13 (SY13) and low-temperature-tolerant cv. Zhengdan 958 (ZD958), were subjected to four treatments: low-temperature without ALA treatment, low-temperature after ALA treatment, normal temperature without ALA treatment, and normal temperature after ALA treatment. Plant morphological growth, proline content, antioxidant enzyme activity and photosynthetic capacity were determined. ALA treatment significantly decreased the inhibitory effects of low-temperature stress on seedling dry weight and increased proline accumulation under low temperatures in ZD958. Pre-application of ALA significantly improved superoxide dismutase and catalase activities in SY13 under low-temperature stress. Furthermore, treating maize seedlings with ALA resulted in significant enhancement of ribulose-1,5-bisphosphate (RuBP) carboxylase activity under low-temperature stress in both cultivars. Pre-treatment with ALA relieved the damage caused by low-temperature stress to maize seedlings, particularly in the low-temperature-sensitive cultivar. Therefore, ALA at appropriate concentrations may be used to prevent reductions in maize crop yield due to low-temperature stress.


PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0232294
Author(s):  
Jianguo Zhang ◽  
Shujun Li ◽  
Quan Cai ◽  
Zhenhua Wang ◽  
Jingsheng Cao ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xunchao Zhao ◽  
Yulei Wei ◽  
Jinjie Zhang ◽  
Li Yang ◽  
Xinyu Liu ◽  
...  

Low temperature is one of the major abiotic stresses that restrict the growth and development of maize seedlings. Membrane lipid metabolism and remodeling are key strategies for plants to cope with temperature stresses. In this study, an integrated lipidomic and transcriptomic analysis was performed to explore the metabolic changes of membrane lipids in the roots of maize seedlings under cold stress (5°C). The results revealed that major extraplastidic phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylinositol (PI)] were dominant membrane lipids in maize root tissues, accounting for more than 70% of the total lipids. In the transcriptome data of maize roots under cold stress, a total of 189 lipid-related differentially expressed genes (DEGs) were annotated and classified into various lipid metabolism pathways, and most of the DEGs were enriched in the “Eukaryotic phospholipid synthesis” (12%), “Fatty acid elongation” (12%), and “Phospholipid signaling” (13%) pathways. Under low temperature stress, the molar percentage of the most abundant phospholipid PC decreased around 10%. The significantly up-regulated expression of genes encoding phospholipase [phospholipase D (PLD)] and phosphatase PAP/LPP genes implied that PC turnover was triggered by cold stress mainly via the PLD pathway. Consequently, as the central product of PC turnover, the level of PA increased drastically (63.2%) compared with the control. The gene-metabolite network and co-expression network were constructed with the prominent lipid-related DEGs to illustrate the modular regulation of metabolic changes of membrane lipids. This study will help to explicate membrane lipid remodeling and the molecular regulation mechanism in field crops encountering low temperature stress.


2014 ◽  
Vol 51 (2) ◽  
pp. 179-190 ◽  
Author(s):  
JIAN-HUA YI ◽  
YUE LI ◽  
ZE-MING DAI ◽  
ZHI-HONG JIA ◽  
WEN-XUAN PU ◽  
...  

SUMMARYLow-temperature stress is an important limiting factor to tobacco growth in early spring of south China. In this study, a low-temperature-resistant agent (LTRA) was employed to examine its ameliorating effect on the inhibition of tobacco growth triggered by low-temperature stress. Results indicated that low-temperature stress of 12 °C for 6 days reduced root number and biomass of tobacco seedling by 27.4% and 24.1%, while treatment with LTRA could recover the inhibitory effect of low-temperature stress on tobacco growth significantly. The content of ascorbic acid and the activities of superoxide dismutase and catalase at low-temperature stress were 65.2%, 53.5% and 32.1% of those at normal temperature condition (26 °C), while the corresponding values with LTRA treatment were 89.2%, 88.9% and 74.2%, suggesting that LTRA treatment could enhance the activity of antioxidant enzyme and the synthesis of antioxidant compounds. Low-temperature stress increased the membrane permeability by 84.8%, while LTRA treatment recovered it by 77.4%. Furthermore, LTRA treatment contributed to increase chlorophyll synthesis and maintain the integrity of tobacco leaf structure. Effective component analysis indicated that the complex of ammonium calcium nitrate and glycine betaine was the main effective component of LTRA in maintaining membrane integrity. Its effective concentration was 1.0 g L−1. The above results suggested that LTRA could enhance the synthesis of chlorophyll, activate the activity of antioxidant enzyme, maintain the integrity of cell membrane, and thus elevate the tolerance of tobacco seedlings to low-temperature stress.


2013 ◽  
Vol 49 (2) ◽  
pp. 295-308 ◽  
Author(s):  
YANG WANG ◽  
TINGTING WEN ◽  
JIN HU ◽  
RUI HAN ◽  
YANFANG ZHU ◽  
...  

SUMMARYSalicylic acid (SA) can induce multiple stress tolerance in plants. This study investigated the relationship between SA and antioxidant enzyme activities in maize seedlings under chilling stress. Changes of endogenous SA, antioxidant enzyme activities and malondialdehyde (MDA) concentrations were assessed in two different chilling-tolerant maize inbred lines (Huang C and Mo17) under chilling stress. The results showed that both endogenous free and bound salicylic acid contents increased in roots and leaves of both lines. MDA concentrations also increased significantly in roots and leaves of both lines after chilling stress. In addition, in Huang C, chilling stress increased the activities of four antioxidant enzymes, ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and peroxidase, while in Mo17, only CAT and APX increased. Furthermore, a regression analysis was conducted between SA and MDA concentrations or antioxidant enzyme activities under chilling stress. The results indicated that MDA concentrations were positively correlated with total SA contents in roots (r = 0.9776, p = 0.0224) and bound SA in leaves (r = 0.9974, p = 0.0458), respectively. Total SA contents had positive correlations with APX activities both in roots (r = 0.9993, p = 0.002) and leaves (r = 0.9630, p = 0.037) and GR in leaves (r = 0.9298, p = 0.0221). Together, these results suggested that chilling stress improved the biosynthesis of endogenous SA, and lipid peroxidation and antioxidant enzyme activities could be indicated by endogenous SA contents of maize seedlings under chilling stress. Furthermore, increased activities of antioxidant enzymes, especially in roots, may contribute to the chilling tolerance of maize seedlings.


Sign in / Sign up

Export Citation Format

Share Document