scholarly journals Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters

2016 ◽  
Vol 12 ◽  
pp. 1826-1838 ◽  
Author(s):  
Élise Euvrard ◽  
Nadia Morin-Crini ◽  
Coline Druart ◽  
Justine Bugnet ◽  
Bernard Martel ◽  
...  

In this study, a polymer, prepared by crosslinking cyclodextrin (CD) by means of a polycarboxylic acid, was used for the removal of pollutants from spiked solutions and discharge waters from the surface treatment industry. In spiked solutions containing five metals, sixteen polycyclic aromatic hydrocarbons (PAH) and three alkylphenols (AP), the material exhibited high adsorption capacities: >99% of Co2+, Ni2+ and Zn2+ were removed, between 65 and 82% of the PAHs, as well as 69 to 90% of the APs. Due to the structure of the polymer and its specific characteristics, such as the presence of carboxylic groups and CD cavities, the adsorption mechanism involves four main interactions: ion exchange, electrostatic interactions and precipitation for metal removal, and inclusion complexes for organics removal. In industrial discharge waters, competition effects appeared, especially because of the presence of calcium at high concentrations, which competed with other pollutants for the adsorption sites of the adsorbent.

Water SA ◽  
2021 ◽  
Vol 47 (4 October) ◽  
Author(s):  
Bruna Martins Vicentin ◽  
Raquel Dalla Costa da Rocha

This work aims to study the potential of expanded perlite (EP) for amoxicillin (AMX) removal in aqueous solution. For this purpose, chemical, morphological, and textural characteristics of the EP were evaluated, in addition to AMX removal by the adsorption process. The kinetic, isothermal, and thermodynamic parameters were also assessed. The EP presented an isoelectric point of 6.5 and a surface with hydroxyl bands, which favour the adsorption process. Air bubbles were sealed and randomly connected with each other, increasing the surface area relative to the adsorption sites. These non-porous or macro-porous sites demonstrate efficiency in the mechanisms of mass transfer. AMX removal was determined to be a pseudo-second-order process since the adsorption velocity was proportional to the square of the available adsorption sites and indicates heterogeneity in the surface interactions between the adsorbed molecules. Also, the interactions were considered multilayer for low concentrations and monolayer for high concentrations (Sips isotherm). The adsorption process was endothermic and utilised a physical adsorption mechanism. Considering that no modification treatment was applied to the EP, and due to its neutral isoelectric point, macropores, amorphous and dipole induction force (physical adsorption) characteristics, favourable affinity between EP and AMX was observed.


2021 ◽  
Vol 72 (1) ◽  
pp. 25-43
Author(s):  
Gregorio Crini ◽  
Corina Bradu ◽  
Cesare Cosentino ◽  
Jean-Noel Staelens ◽  
Bernard Martel ◽  
...  

In this study, an adsorption process using hemp-based materials in felt form was applied to remove between 45 and 53 contaminants present in wastewater from the surface treatment industry. Several materials were compared using batch experiments, including a felt made of 100% hemp fiber (HEMP), the same felt cross-linked with 1,2,3,4-butanetetracarboxylic acid (HEMPBA), a felt coated with a maltodextrin-1,2,3,4-butanetetracarboxylic cross-linked polymer (HEMPM), and a felt coated with hydroxypropyl-a-cyclodextrin-1,2,3,4-butanetetra-carboxylic cross-linked polymer (HEMPCD). Chemical analysis showed that HEMPBA, HEMPM and HEMPCD materials had high adsorption capacities on metals in wastewater, confirming the role of carboxylic groups. Only HEMPCD was able to remove both metals and organics, resulting in the virtual elimination of organics such as chloroform, 1,2-dichlorobenzene, and nonylphenol. This result demonstrated the important role of cyclodextrin molecules in adsorption mechanism. HEMPCD also resulted in an important decrease in residual chemical oxygen demand and total organic carbon of more than 83% and 53%, respectively, while the treatment with HEMP lowered them by 12% and 12%, HEMPBA by 9% and 7%, and HEMPM by 45% and 26%. Chemical abatement and toxicity mitigation have demonstrated that adsorption onto a non-conventional material could be an interesting treatment step for the detoxification of wastewater.


2020 ◽  
Vol 7 (10) ◽  
pp. 201192
Author(s):  
Zheng Wang ◽  
Xique Wu ◽  
Shengxu Luo ◽  
Yanshi Wang ◽  
Zhuang Tong ◽  
...  

Nanoscale zero-valent iron (NZVI) has a high adsorption capacity for heavy metals, but easily forms aggregates. Herein, preprocessed undulating venus shell (UVS) is used as support material to prevent NZVI from reuniting. The SEM and TEM results show that UVS had a porous layered structure and NZVI particles were evenly distributed on the UVS surface. A large number of adsorption sites on the surface of UVS-NZVI are confirmed by IR and XRD. UVS-NZVI is used for adsorption of Pb 2+ and Cd 2+ at pH = 6.00 in aqueous solution, and the experimental adsorption capacities are 29.91 and 38.99 mg g −1 at optimal pH, respectively. Thermodynamic studies indicate that the adsorption of ions by UVS-NZVI is more in line with the Langmuir model when Pb 2+ or Cd 2+ existed alone. For the mixed solution of Pb 2+ and Cd 2+ , only the adsorption of Pb 2+ by UVS-NZVI conforms to the Langmuir model. In addition, the maximum adsorption capacities of UVS-NZVI for Pb 2+ and Cd 2+ are 93.01 and 46.07 mg g −1 , respectively. Kinetic studies demonstrate that the determination coefficients ( R 2 ) of the pseudo first-order kinetic model for UVS-NZVI adsorption of Cd 2+ and Pb 2+ are higher than those of the pseudo second-order kinetic model and Elovich kinetic model. Highly efficient performance for metal removal makes UVS-NZVI show potential application to heavy metal ion adsorption.


1996 ◽  
Vol 31 (3) ◽  
pp. 485-504 ◽  
Author(s):  
Patricia Chow-Fraser ◽  
Barb Crosbie ◽  
Douglas Bryant ◽  
Brian McCarry

Abstract During the summer of 1994, we compared the physical and nutrient characteristics of the three main tributaries of Cootes Paradise: Spencer, Chedoke and Borer’s creeks. On all sampling occasions, concentrations of CHL α and nutrients were always lowest in Borer’s Creek and highest in Chedoke Creek. There were generally 10-fold higher CHL α concentrations and 2 to 10 times higher levels of nitrogen and phosphorus in Chedoke Creek compared with Spencer Creek. Despite this, the light environment did not differ significantly between Spencer and Chedoke creeks because the low algal biomass in Spencer Creek was balanced by a relatively high loading of inorganic sediments from the watershed. Laboratory experiments indicated that sediments from Chedoke Creek released up to 10 µg/g of soluble phosphorus per gram (dry weight) of sediment, compared with only 2 µg/g from Spencer Creek. By contrast, sediment samples from Spencer Creek contained levels of polycyclic aromatic hydrocarbon that were as high as or higher than those from Chedoke Creek, and much higher than those found in Borer’s Creek. The distribution of normalized PAH concentrations suggests a common source of PAHs in all three tributaries, most likely automobile exhaust, since there were high concentrations of fluoranthene and pyrene, both of which are derivatives of engine combustion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mizuki Ogata ◽  
Reiji Masuda ◽  
Hiroya Harino ◽  
Masayuki K. Sakata ◽  
Makoto Hatakeyama ◽  
...  

AbstractEnvironmental DNA (eDNA) can be a powerful tool for detecting the distribution and abundance of target species. This study aimed to test the longevity of eDNA in marine sediment through a tank experiment and to use this information to reconstruct past faunal occurrence. In the tank experiment, juvenile jack mackerel (Trachurus japonicus) were kept in flow-through tanks with marine sediment for two weeks. Water and sediment samples from the tanks were collected after the removal of fish. In the field trial, sediment cores were collected in Moune Bay, northeast Japan, where unusual blooms of jellyfish (Aurelia sp.) occurred after a tsunami. The samples were analyzed by layers to detect the eDNA of jellyfish. The tank experiment revealed that after fish were removed, eDNA was not present in the water the next day, or subsequently, whereas eDNA was detectable in the sediment for 12 months. In the sediment core samples, jellyfish eDNA was detected at high concentrations above the layer with the highest content of polycyclic aromatic hydrocarbons, reflecting tsunami-induced oil spills. Thus, marine sediment eDNA preserves a record of target species for at least one year and can be used to reconstruct past faunal occurrence.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 378 ◽  
Author(s):  
Marcela Martínez ◽  
Yanett Leyton ◽  
Luis Cisternas ◽  
Carlos Riquelme

The environmental problems generated by waste from the mining industry in the mineral extraction for business purposes are known worldwide. The aim of this work is to evaluate the microalga Muriellopsis sp. as a potential remover of metallic ions such as copper (Cu2+), zinc (Zn2+) and iron (Fe2+), pollutants of acid mine drainage (AMD) type waters. For this, the removal of these ions was verified in artificial acid waters with high concentrations of the ions under examination. Furthermore, the removal was evaluated in waters obtained from areas contaminated by mining waste. The results showed that Muriellopsis sp. removed metals in waters with high concentrations after 4–12 h and showed tolerance to pH between 3 and 5. These results allow proposing this species as a potential bioremediator for areas contaminated by mining activity. In this work, some potential alternatives for application in damaged areas are proposed as a decontamination plan and future prevention.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Bayram Kizilkaya ◽  
A. Adem Tekınay

Removal of lead (II) from aqueous solutions was studied by using pretreated fish bones as natural, cost-effective, waste sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacities of the adsorbent was investigated. The maximum adsorption capacity for Pb (II) was found to be 323 mg/g at optimum conditions. The experiments showed that when pH increased, an increase in the adsorbed amount of metal of the fish bones was observed. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of Pb (II) adsorption and the value ofRLfor Pb (II) was found to be 0.906. The thermodynamic parameters related to the adsorption process such asEa,ΔG°,ΔH°, andΔS° were calculated andEa,ΔH°, andΔS° were found to be 7.06, 46.01 kJ mol−1, and 0.141 kJ mol−1K−1for Pb (III), respectively.ΔH° values (46.01 kJmol−1) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to the experimental equilibrium data. The fish bones were effectively used as sorbent for the removal of Pb (II) ions from aqueous solutions.


2020 ◽  
Vol 10 (1) ◽  
pp. 349 ◽  
Author(s):  
Jayanta Kumar Biswas ◽  
Anurupa Banerjee ◽  
Binoy Sarkar ◽  
Dibyendu Sarkar ◽  
Santosh Kumar Sarkar ◽  
...  

The present study shows the potential of an extracellular polymeric substance (EPS) produced by Bacillus licheniformis strain KX657843 isolated from earthworm (Metaphire posthuma) gut in the sorption of Cu(II) and Zn(II) and in flocculation. After harvesting bacterial cells from sucrose supplemented denitrifying culture medium, the EPS was extracted following ethanolic extraction method. The Fourier Transform Infrared Spectroscopy (FTIR) and 1H and 13C Nuclear Magnetic Resonance (NMR) of EPS revealed its functional groups, electronegative constituents, unsaturated carbon, and carbonyl groups. The negatively charged functional groups of carbohydrates and protein moiety of the EPS endowed it with heavy metal binding capacity through electrostatic interactions. The highest flocculation activity (83%) of EPS was observed at 4 mg L−1 and pH 11. The metal sorption by EPS increased with increasing pH. At pH 8, the EPS was able to remove 86 and 81% Cu(II) and Zn(II), respectively, from a 25 mg L−1 metal solution. 94.8% of both the metals at 25 mg L−1 metal solutions were removed by EPS at EPS concentration of 100 mg L−1. From Langmuir isotherm model, the maximum sorption capacities of EPS were calculated to be 58.82 mg g−1 for Cu(II) and 52.45 mg g−1 for Zn(II). The bacterial EPS showed encouraging flocculating and metal sorption properties. The potential to remove Cu(II) and Zn(II) implies that the EPS obtained from the earthworm gut bacteria can be used as an effective agent for environmental remediation of heavy metals and in bioflocculation.


Sign in / Sign up

Export Citation Format

Share Document