scholarly journals Silver Nanoparticles Loaded Activated Carbon Synthesis Using Clitorea Ternatea Extract for Crystal Violet Dye Removal

2021 ◽  
Vol 3 (1) ◽  
pp. 26-36
Author(s):  
Mohamad Aizad Mohd Mokhtar ◽  
Roshafima Rasit Ali ◽  
Eleen Dayana Mohamed Isa

Dyes are coloured compound which are widely used in textile, painting, rubber, cosmetics, plastics and leather industry to colour their products. However, the irresponsibility of certain manufacturer results in producing dye waste and channel it to water resources had become one of the biggest challenges in water pollution. In this study, an effective solid adsorbent derived from sustainable sources for adsorption capacity study was produced which is silver nanoparticles loaded activated carbon (Ag NPs – AC) to remove crystal violet (CV) dye. Adsorption process are cost – effective, simple and flexible with various dye pollutants. Silver nanoparticles (Ag NPs) was synthesized from Clitorea Ternatea flower extract that utilizes functions as stabilizing agents for silver nitrate (AgNO3) to promotes environmental friendly with no toxic chemicals produced and loaded in activated carbon (AC). Characterization of Ag NPs was analysed using UV-Visible which correspond to peak at 408 nm and XRD analysis. Four peaks values for silver at 2θ of 38.19°, 44.43°, 64.57°, 77.43° and average crystallite size of Ag NPs and Ag NPs – AC were calculated to be 16.11 nm and 36.13 nm respectively that were obtained from XRD pattern. The adsorption capacity of Ag NPs – AC was analysed and the optimum conditions were determined using different parameters which are the Ag NPs - AC ratio (1.0 g), contact time (240 min), adsorbent dosage (30 mg) and pH of CV dye (10). The highest percentage removal of CV dye using Ag NPs – AC was recorded up to 97% at 240 min with 30 mg dosage. Ag NPs – AC as adsorbent is a promising advanced materials in removing water pollutants with viable conditions and can applied in the wastewater treatment industry.

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2241
Author(s):  
Rauf Foroutan ◽  
Seyed Jamaleddin Peighambardoust ◽  
Seyed Hadi Peighambardoust ◽  
Mirian Pateiro ◽  
Jose M. Lorenzo

Activated carbon prepared from lemon (Citrus limon) wood (ACL) and ACL/Fe3O4 magnetic nanocomposite were effectively used to remove the cationic dye of crystal violet (CV) from aqueous solutions. The results showed that Fe3O4 nanoparticles were successfully placed in the structure of ACL and the produced nanocomposites showed superior magnetic properties. It was found that pH was the most effective parameter in the CV dye adsorption and pH of 9 gave the maximum adsorption efficiency of 93.5% and 98.3% for ACL and ACL/Fe3O4, respectively. The Dubinin–Radushkevich (D-R) and Langmuir models were selected to investigate the CV dye adsorption equilibrium behavior for ACL and ACL/Fe3O4, respectively. A maximum adsorption capacity of 23.6 and 35.3 mg/g was obtained for ACL and ACL/Fe3O4, respectively indicating superior adsorption capacity of Fe3O4 nanoparticles. The kinetic data of the adsorption process followed the pseudo-second order (PSO) kinetic model, indicating that chemical mechanisms may have an effect on the CV dye adsorption. The negative values obtained for Gibb’s free energy parameter (−20 < ΔG < 0 kJ/mol) showed that the adsorption process using both types of the adsorbents was physical. Moreover, the CV dye adsorption enthalpy (ΔH) values of −45.4 for ACL and −56.9 kJ/mol for ACL/Fe3O4 were obtained indicating that the adsorption process was exothermic. Overall, ACL and ACL/Fe3O4 magnetic nanocomposites provide a novel and effective type of adsorbents to remove CV dye from the aqueous solutions.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 355-362 ◽  
Author(s):  
H. Pignon ◽  
C. Brasquet ◽  
P. Le Cloirec

The aim of this work is to evaluate the efficiency of Activated Carbon Cloths (ACCs) as a refining treatment of membrane filtration in the case of effluent streams containing both dyes and suspended solids (SS) or colloids responsible for turbidity. It is divided into two parts. First, dye adsorption experiments are carried out. Kinetics and isotherms enable us to show the feasibility of the adsorption and to study the influence of different operating conditions. The results demonstrate that adsorption is enhanced under acidic conditions, the adsorption capacity being increased by 40% in some cases. Moreover, microscopic characteristics of ACCs have a great influence on the adsorption process: there is a relationship between the adsorbent porosity and the adsorbate molecular weight, the mesoporous adsorbent being more efficious to remove the larger molecular weight dyes. In the case of low molecular weight compounds, the adsorbent with the higher specific surface area provides the greater adsorption capacity. Molecular connectivity indexes were used to confirm the correlation of the molecular structure of the adsorbates with their adsorbability. The second part consists of an estimation of the efficiency of the coupling of ultrafiltration and adsorption onto ACC. Tests performed on a laboratory-scale coupling show that a molecular weight cut-off of 3,000 D gives rise to a 98% removal of turbidity whereas dyes are not much retained. Furthermore, ultrafiltration is useful in improving the adsorption capacities of ACC in a continuous flow reactor (up to 50%).


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Margarita I. Skiba ◽  
Victoria I. Vorobyova ◽  
Alexander Pivovarov ◽  
Natalya P. Makarshenko

The process of obtaining aqueous solutions of silver nanoparticles with the use of a low-temperature nonequilibrium contact plasma and stabilizing agent—polysaccharide (sodium alginate)—has been examined. The synthesized Ag NPs were characterized by using UV-Vis spectroscopy, dynamic light scattering (DLS), scanning electron microscope (SEM), and XRD analysis. The effect of concentration of Ag+, sodium alginate, duration of processing by plasma discharge, and pH of liquid on the production of silver nanoparticles has been studied. The results demonstrated that synthesis provides the formation of silver nanoparticles for investigated concentrations of Ag+ (0.3-3.0 mmol/l) and 5.0 g/l Na-Alg (pH=7–10) within 1–5 minutes. From the SEM images, the silver nanoparticles are found to be almost spherical. Powder XRD results reveal that Ag nanoparticles have a face-centered cubic crystal structure. Zeta potential of plasma-chemically obtained colloidal solutions at various concentrations of Ag+ ions and stabilizing agent varies from −32.8 to −39.3 mV, indicating the moderate stability of synthesized nanoparticles.


2019 ◽  
Vol 20 (2) ◽  
Author(s):  
Morgan Hull

Hydrogen sulfide (H₂S) emissions from landfills negatively impact surrounding communities. In addition to an unpleasant, rotten-egg odor, inhalation of the gas can cause respiratory distress and irritation. Peak emissions are released from C&D landfills through the decomposition of gypsum drywall. Current removal technologies are costly and often ineffective. The goal of this research was to develop a cost-effective mat geared toward H₂S removal. Preliminary research revealed an increase in adsorption capacity through the addition of iron salts, FeCl3 and FeSO4, to activated carbon at a 5:1 carbon to iron ratio. To evaluate the effect of heat treatments on iron oxide formation, and subsequent adsorption capacity, samples were divided into heat treatment groups of 250ºC, 450ºC, and 650ºC. Samples were flushed with 100 ppm of H₂S under N₂ at 250 ml/min for two hours. Over this time duration, samples subjected to higher temperature heat treatments showed increased adsorption capacity. All heat treated samples demonstrated higher adsorption compared to the baseline non-heat treated samples. Additional research will be conducted to assess the effect of heat treatments above 650ºC.


2018 ◽  
Vol 4 (1) ◽  
pp. 10
Author(s):  
Ahmet Aslan ◽  
Safiye Meric Acikel ◽  
Raziye Hilal Senay ◽  
Sinan Akgol

Different chemical substances and too much water are used during leather production. Therefore, the waste water load of the leather industry is harmful to the environment. One of the pollution source is the production of leather coloring process is a further need to focus on the removal of dye waste waters subject. These water-soluble dyes have a small organic molecular size. Besides the environmental hazards that these dyes cannot be underestimated, they also have harmful effects on human health. In this study, poly (hydroxyethyl methacrylate-glycidyl methacrylate) p (HEMA-GMA) hydrogel membranes were synthesized by UV polymerization method. The hydrogel synthesized is modified with imino diacetic acid (IDA) and then chelated with trivalent chromium ions. The chelating capacity of the membranes were determined according to the time, pH and concentration parameters. Dynamic swelling test, elemental analysis, ninhydrin analysis and adsorption, desorption and reusability performances of membranes were also determined. As a result of the analyzes, it was understood that the hydrogel membrane had high adsorption capacity. The adsorption capacity of the p (HEMA-GMA) -IDA-Cr (III) hydrogel membrane did not decrease even after 5 desorption. At the end of the fifth cycle, the membrane was found to have a dye-binding capacity of about 92%. According to these results, the reusable property of the membrane also makes it cost effective as well as effective adsorption.


2020 ◽  
Vol 8 (4) ◽  
pp. 1625-1629

Nanoparticles are used in various fields of science, especially medicine. Advent of nanotechnology has led to significant development in disease diagnosis, treatment and drug delivery. Silver nanoparticles (Ag-NPs) play an important role in medical application, which makes them a viable alternative to common antibiotics. Amongst various methods, synthesis of Ag-NPs via green method has the advantage of being cost effective with no toxic agent. In this study, Spherical shape Ag-NPs with average size of 30 nm were synthetized using Anethum graveolens leaf extract as a green, cost-effective, non-toxic and environment-friendly source. Transmission electron microscopy (TEM), particle size analysis (PSA) and Fourier transform infrared (FT-IR) were performed to characterize synthesized Ag-NPs. The antibacterial activity of the synthetized Ag-NPs was evaluated against gram positive and negative bacterial pathogens. The minimum inhibitory concentration (MIC) at different concentrations of Ag-NPs were used to evaluate their antibacterial properties against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa pathogens. The results exhibited a desirable antibacterial property of Ag-NPs, suggested its usage as putative antibacterial agents. Moreover, the anticancer effect of green synthesized Ag-NPs was evaluated against MCF-7 lines and results showed that the cell viability is depended on the concentration of Ag-NPs. In short, this method provides a simple, cost effective and eco-friendly way to synthesis Ag-NPs which can be used as a suitable alternative to common antibiotics that use hazardous chemical agents, additionally, with anticancer effects against MCF-7 cells.


Author(s):  
Karim Samy El-Said ◽  
Ahmed Ahmed El-Barbary ◽  
Hazem M. ElKholy ◽  
Ahmed S. Haidyrah ◽  
Mohamed Betiha ◽  
...  

Reaction of 2-mercapto-3-phenylquinazolin-4(3H)-one (MPQ) with both 4-vinyl benzyl chloride and allyl bromide furnished the reactive heterocyclic monomers 3-phenyl-2-((4-vinylbenzyl) thio) quinazolin-4(3H)-one (PVTQ) and 2-(allylthio)-3-phenylquinazolin-4(3H)-one (APQ), respectively. Copolymerization of PVTQ monomer with styrene and methyl methacrylate in the presence of 2,2&prime;-azobisisobutyronitrile (AIBN) afforded the copolymers PS-co-PPVTQ and PMMA-co-PPVTQ, respectively. Similarly, copolymerization of monomer APQ with styrene and methyl methacrylate (MMA) afforded the copolymers PS-co-PAPQ and PMMA-co-PAPQ, respectively. The resulted copolymers were characterized by using FT-IR, 1H-NMR and GPC techniques. Silver nanocomposites of PS, PMMA, PS-co-PPVTQ, PMMA-co-PPVTQ, PS-co-PAPQ and PMMA-co-PAPQ were synthesized by the addition of silver nitrate into the polymer solution. The reduction of silver ions into silver nanoparticles was performed in DMF and water. Thermogravimetric (TGA) analysis was used to determine the thermal stability of the copolymers and their silver nanocomposites. The X-ray diffraction (XRD) analysis indicated the amorphous structures of the co-polymers and confirmed the formation of silver nanoparticles. The antitumor and antibacterial activities were screened for the copolymers and enhanced by the formation of their silver nanocomposites. In vivo antitumor activity in Ehrlich Ascitic Carcinoma (EAC) mice model showed that PS-co-PPVTQ/Ag NPs, PMMA-co-PPVTQ/Ag NPs, and PMMA-co-PAPQ/Ag NPs displayed promising inhibitory effects against EAC and induce apoptosis against MCF-7 cells.


2020 ◽  
Vol 15 ◽  
pp. 155892502091984
Author(s):  
Moussa Abbas ◽  
Zahia Harrache ◽  
Mohamed Trari

This study investigates the potential use of activated carbon, prepared from pomegranate peels, as an adsorbent activated using H3PO4 and its ability to remove crystal violet from an aqueous solution. The adsorbent was characterized by the Brunauer–Emmett–Teller method (specific surface area: 51.0674 m2 g−1) and point of zero charge (pHPZC = 5.2). However, some examined factors were found to have significant impacts on the adsorption capacity of activated carbon derived from pomegranate peels such as the initial dye concentration (5–15 mg L−1), solution pH (2–14), adsorbent dose (1–8 g L−1), agitation speed (100–700 r/min), and temperature (298–338 K). The best adsorption capacity was found at pH 11 with an adsorbent dose of 1 g L−1, an agitation speed at 400 r/min, and a contact time of 45 min. The adsorption mechanism of crystal violet onto activated carbon derived from pomegranate peels was studied using the pseudo-first-order, pseudo-second-order, Elovich, and Webber–Morris diffusion models. The adsorption kinetics were found to rather follow a pseudo-second order kinetic model with a determination coefficient ( R2) of 0.999. The equilibrium adsorption data for crystal violet adsorbed onto activated carbon derived from pomegranate peels were analyzed by the Langmuir, Freundlich, Elovich, and Temkin models. The results indicate that the Langmuir model provides the best correlation with qmax capacities of 23.26 and 76.92 mg g−1 at 27°C and 32°C, respectively. The adsorption isotherms at different temperatures have been used for the determination of thermodynamic parameters like the free energy, enthalpy, and entropy to predict the nature of adsorption process. The negative values Δ G0 (−5.221 to −1.571 kJ mol−1) and Δ H0 (−86.141 kJ mol−1) indicate that the overall adsorption is spontaneous and exothermic with a physisorption process. The adsorbent derived from pomegranate peels was found to be very effective and suitable for the removal of reactive dyes from aqueous solutions, due to its availability, low-cost preparation, and good adsorption capacity.


2019 ◽  
Vol 15 ◽  
pp. 157-165 ◽  
Author(s):  
Saleh Vahdati-Khajeh ◽  
Maryam Zirak ◽  
Roghaye Zooghi Tejrag ◽  
Asra Fathi ◽  
Kamran Lamei ◽  
...  

NANO ◽  
2021 ◽  
Author(s):  
Saira Naz ◽  
Amjad Nisar ◽  
Lizhi Qian ◽  
Shafqat Hussain ◽  
Shafqat Karim ◽  
...  

The development of a highly sensitive and selective electrocatalyst for the detection of diclofenac sodium (D.S.) has remained a great challenge. In this work, graphene oxide functionalized with silver nanoparticles and zinc oxide (Ag–ZnO–GO) electrocatalyst was developed and investigated for the detection of D.S. The Ag–ZnO–GO/glassy carbon electrode exhibits high sensitivity and fast response within 3[Formula: see text]s owing to the efficient oxidation of D.S. at a very low potential at 0.25[Formula: see text]V. Moreover, the electrode shows a low detection limit of 0.02[Formula: see text][Formula: see text]M ([Formula: see text]) and long-term stability. To explore the synergic effects, the measurements of D.S. using GO, ZnO and ZnO–GO modified electrodes were also performed. The results demonstrate that the Ag–ZnO–GO nanocomposite electrode exhibits enhanced sensitivity and selectivity compared to the other electrodes. In addition, the electrode reveals excellent results for D.S. detection in the real samples as well. The enhanced performance of the proposed electrode is attributed to the improved electron transfer ability and synergic effects of the plasmonic Ag NPs and ZnO–GO structure. It is expected that Ag–ZnO–GO composite is a promising candidate for the construction of cost-effective electrochemical biosensors for medical and industrial applications.


Sign in / Sign up

Export Citation Format

Share Document