scholarly journals Pseudomonas aeruginosa a common opportunistic pathogen in Jordan: A review article.

10.3823/827 ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Asem A. Shehabi ◽  
Aya M. Kamal

Pseudomonas aeruginosa is widely present in many diverse environments. It can be found in various living sources, including water, plants, intestinal tract of human and animals, and most importantly hospital environment. The organism is an important cause of nosocomial infections, such as septicemia and pneumonia, life-threatening infections in immunocompromised persons, and chronic infections in cystic fibrosis patients. Recent studies reported that hospitalized patients infected with multidrug resistance (MDR) P. aeruginosa have increased hospital length of stay and mortality. This short review focus on the current common occurrence and antimicrobial susceptibility pattern of P. aeruginosa in Jordan.

Microbiology ◽  
2009 ◽  
Vol 155 (8) ◽  
pp. 2612-2619 ◽  
Author(s):  
Lisa K. Nelson ◽  
Genevieve H. D'Amours ◽  
Kimberley M. Sproule-Willoughby ◽  
Douglas W. Morck ◽  
Howard Ceri

Pseudomonas aeruginosa frequently acts as an opportunistic pathogen of mucosal surfaces; yet, despite causing aggressive prostatitis in some men, its role as a pathogen in the prostate has not been investigated. Consequently, we developed a Ps. aeruginosa infection model in the rat prostate by instilling wild-type (WT) Ps. aeruginosa strain PAO1 into the rat prostate. It was found that Ps. aeruginosa produced acute and chronic infections in this mucosal tissue as determined by bacterial colonization, gross morphology, tissue damage and inflammatory markers. WT strain PAO1 and its isogenic mutant PAO-JP2, in which both the lasI and rhlI quorum-sensing signal systems have been silenced, were compared during both acute and chronic prostate infections. In acute infections, bacterial numbers and inflammatory markers were comparable between WT PA01 and PAO-JP2; however, considerably less tissue damage occurred in infections with PAO-JP2. Chronic infections with PAO-JP2 resulted in reduced bacterial colonization, tissue damage and inflammation as compared to WT PAO1 infections. Therefore, the quorum-sensing lasI and rhlI genes in Ps. aeruginosa affect acute prostate infections, but play a considerably more important role in maintaining chronic infections. We have thus developed a highly reproducible model for the study of Ps. aeruginosa virulence in the prostate.


2020 ◽  
Author(s):  
Madeline Mei ◽  
Jacob Thomas ◽  
Stephen P. Diggle

AbstractBacteriocins are proteinaceous antimicrobials produced by bacteria which are active against other strains of the same species. R-type pyocins are phage tail-like bacteriocins produced by Pseudomonas aeruginosa. Due to their anti-pseudomonal activity, R-pyocins have potential as therapeutics in infection. P. aeruginosa is a Gram-negative opportunistic pathogen and is particularly problematic for individuals with cystic fibrosis (CF). P. aeruginosa from CF lung infections develop increasing resistance to antibiotics, making new treatment approaches essential. P. aeruginosa populations become phenotypically and genotypically diverse during infection, however little is known of the efficacy of R-pyocins against heterogeneous populations. R-pyocins vary by subtype (R1-R5), distinguished by binding to different residues on the lipopolysaccharide (LPS). Each type varies in killing spectrum, and each strain produces only one R-type. To evaluate the prevalence of different R-types, we screened P. aeruginosa strains from the International Pseudomonas Consortium Database (IPCD) and from our biobank of CF strains. We found that (i) R1-types were the most prevalent R-type among strains from respiratory sources and (ii) isolates collected from the same patient have the same R-type. We then assessed the impact of diversity on R-pyocin susceptibility and found a heterogenous response to R-pyocins within populations, likely due to differences in the LPS core. Our work reveals that heterogeneous populations of microbes exhibit variable susceptibility to R-pyocins and highlights that there is likely heterogeneity in response to other types of LPS-binding antimicrobials, including phage.ImportanceR-pyocins have potential as alternative therapeutics against Pseudomonas aeruginosa in chronic infection, however little is known about the efficacy of R-pyocins in heterogeneous bacterial populations. P. aeruginosa is known to become resistant to multiple antibiotics, as well as evolve phenotypic and genotypic diversity over time; thus it is particularly difficult to eradicate in chronic cystic fibrosis (CF) lung infections. In this study, we found that P. aeruginosa populations from CF lungs maintain the same R-pyocin genotype but exhibit heterogeneity in susceptibility to R-pyocins from other strains. Our findings suggest there is likely heterogeneity in response to other types of LPS-binding antimicrobials, such as phage, highlighting the necessity of further studying the potential of LPS-binding antimicrobial particles as alternative therapies in chronic infections.


2018 ◽  
Vol 115 (42) ◽  
pp. 10714-10719 ◽  
Author(s):  
Alana Schick ◽  
Rees Kassen

Chronic infection of the cystic fibrosis (CF) airway by the opportunistic pathogen Pseudomonas aeruginosa is the leading cause of morbidity and mortality for adult CF patients. Prolonged infections are accompanied by adaptation of P. aeruginosa to the unique conditions of the CF lung environment, as well as marked diversification of the pathogen into phenotypically and genetically distinct strains that can coexist for years within a patient. Little is known, however, about the causes of this diversification and its impact on patient health. Here, we show experimentally that, consistent with ecological theory of diversification, the nutritional conditions of the CF airway can cause rapid and extensive diversification of P. aeruginosa. Mucin, the substance responsible for the increased viscosity associated with the thick mucus layer in the CF airway, had little impact on within-population diversification but did promote divergence among populations. Furthermore, in vitro evolution recapitulated traits thought to be hallmarks of chronic infection, including reduced motility and increased biofilm formation, and the range of phenotypes observed in a collection of clinical isolates. Our results suggest that nutritional complexity and reduced dispersal can drive evolutionary diversification of P. aeruginosa independent of other features of the CF lung such as an active immune system or the presence of competing microbial species. We suggest that diversification, by generating extensive phenotypic and genetic variation on which selection can act, may be a key first step in the development of chronic infections.


Author(s):  
Janie Faris ◽  
Jordan Wilson ◽  
Heather S Dolman ◽  
Andrew Isaacson ◽  
Alfred E Baylor ◽  
...  

Abstract Toxic epidermal necrolysis (TEN) is a severe cutaneous reaction that can be life-threatening. In the United States, there are no established guidelines for the treatment of TEN. Supportive care including fluids and supportive therapies are the current recommendations. Research surrounding TEN involves mostly case studies or small, uncontrolled studies. Recent literature describes the use of tumor necrosis factor blockers in the treatment of TEN with positive results. These case reports describe decreased time to reepithelization, hospital length of stay, and minimal side effects. Conversely, we present three fatalities after the administration of etanercept.


2014 ◽  
Vol 82 (4) ◽  
pp. 1638-1647 ◽  
Author(s):  
Ziyu Sun ◽  
Jing Shi ◽  
Chang Liu ◽  
Yongxin Jin ◽  
Kewei Li ◽  
...  

ABSTRACTPseudomonas aeruginosais an opportunistic pathogen that causes acute and chronic infections in humans. Pyocins are bacteriocins produced byP. aeruginosathat are usually released through lysis of the producer strains. Expression of pyocin genes is negatively regulated by PrtR, which gets cleaved under SOS response, leading to upregulation of pyocin synthetic genes. Previously, we demonstrated that PrtR is required for the expression of type III secretion system (T3SS), which is an important virulence component ofP. aeruginosa. In this study, we demonstrate that mutation inprtRresults in reduced bacterial colonization in a mouse acute pneumonia model. Examination of bacterial and host cells in the bronchoalveolar lavage fluids from infected mice revealed that expression of PrtR is induced by reactive oxygen species (ROS) released by neutrophils. We further demonstrate that treatment with hydrogen peroxide or ciprofloxacin, known to induce the SOS response and pyocin production, resulted in an elevated PrtR mRNA level. Overexpression of PrtR by atacpromoter repressed the endogenousprtRpromoter activity, and electrophoretic mobility shift assay revealed that PrtR binds to its own promoter, suggesting an autorepressive mechanism of regulation. A high level of PrtR expressed from a plasmid resulted in increased T3SS gene expression during infection and higher resistance against ciprofloxacin. Overall, our results suggest that the autorepression of PrtR contributes to the maintenance of a relatively stable level of PrtR, which is permissive to T3SS gene expression in the presence of ROS while increasing bacterial tolerance to stresses, such as ciprofloxacin, by limiting pyocin production.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1261 ◽  
Author(s):  
Jens Klockgether ◽  
Burkhard Tümmler

The versatile and ubiquitousPseudomonas aeruginosais an opportunistic pathogen causing acute and chronic infections in predisposed human subjects. Here we review recent progress in understandingP. aeruginosapopulation biology and virulence, its cyclic di-GMP-mediated switches of lifestyle, and its interaction with the mammalian host as well as the role of the type III and type VI secretion systems inP. aeruginosainfection.


2006 ◽  
Vol 74 (8) ◽  
pp. 4462-4473 ◽  
Author(s):  
Michelle A. Laskowski ◽  
Barbara I. Kazmierczak

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in a wide range of hosts. Expression of the type III secretion system (T3SS) proteins is correlated with virulence in models of acute infection, while downregulation of the T3SS and upregulation of genes important for biofilm formation are observed during chronic infections. RetS, a hybrid sensor kinase-response regulator protein of P. aeruginosa, plays a key role in the reciprocal regulation of virulence factors required for acute versus chronic infection and is postulated to act in concert with two other sensor kinase-response regulator hybrids, GacS and LadS. This work examines the roles of the putative sensing and signal transduction domains of RetS in induction of the T3SS in vitro and in a murine model of acute pneumonia. We identify distinct signaling roles for the tandem receiver domains of RetS and present evidence suggesting that RetS may serve as a substrate for another sensor kinase. Phenotypes associated with RetS alleles lacking periplasmic and/or transmembrane domains further indicate that the periplasmic domain of RetS may transmit a signal that inhibits RetS activity during acute infections.


2016 ◽  
Vol 198 (13) ◽  
pp. 1812-1826 ◽  
Author(s):  
Sean D. Stacey ◽  
Christopher L. Pritchett

ABSTRACTPseudomonas aeruginosathrives in multiple environments and is capable of causing life-threatening infections in immunocompromised patients. RsmA is a posttranscriptional regulator that controls virulence factor production and biofilm formation. In this study, we investigated the expression and activity ofrsmAand the protein that it encodes, RsmA, inP. aeruginosamucAmutant strains, which are common in chronic infections. We determined that AlgU regulates a previously unknownrsmApromoter inP. aeruginosa. Western blot analysis confirmed that AlgU controlsrsmAexpression in both a laboratory strain and a clinical isolate. RNase protection assays confirmed the presence of tworsmAtranscripts and suggest that RpoS and AlgU regulatersmAexpression. Due to the increased amounts of RsmA inmucAmutant strains, a translational leader fusion of the RsmA target,tssA1, was constructed and tested inmucA,algU,retS,gacA, andrsmAmutant backgrounds to examine posttranscriptional activity. From these studies, we determined that RsmA is active inmucA22mutants, suggesting a role for RsmA inmucAmutant strains. Taken together, we have demonstrated that AlgU controlsrsmAtranscription and is responsible for RsmA activity inmucAmutant strains. We propose that RsmA is active inP. aeruginosamucAmutant strains and that RsmA also plays a role in chronic infections.IMPORTANCEP. aeruginosacauses severe infections in immunocompromised patients. The posttranscriptional regulator RsmA is known to control virulence and biofilm formation. We identify a newrsmApromoter and determine that AlgU is important in the control ofrsmAexpression. MutantmucAstrains that are considered mucoid were used to confirm increasedrsmAexpression from the AlgU promoter. We demonstrate, for the first time, that there is RsmA activity in mucoidP. aeruginosastrains. Our work suggests that RsmA may play a role during chronic infections as well as acute infections.


Author(s):  
Wai Leong ◽  
Carla Lutz ◽  
Jonathan Williams ◽  
Yan Hong Poh ◽  
Benny Yeo Ken Yee ◽  
...  

AbstractThe opportunistic pathogen, Pseudomonas aeruginosa, is ubiquitous in the environment, and in humans is capable of causing acute and chronic infections. P. aeruginosa, when co-incubated with the bacterivorous amoeba, Acanthamoeba castellanii, for extended periods, produced genetic and phenotypic variants. Sequencing of late-stage amoeba-adapted P. aeruginosa isolates demonstrated single nucleotide polymorphisms within genes that encode known virulence factors, and this correlated with a reduction in expression of virulence traits. Virulence towards the nematode, Caenorhabditis elegans, was attenuated in late-stage amoeba-adapted P. aeruginosa compared to early stage amoeba-adapted and non-adapted counterparts. Late-stage amoeba-adapted P. aeruginosa lost competitive fitness compared to non-adapted counterparts when grown in nutrient rich media. However, non-adapted P. aeruginosa were rapidly cleared by amoeba predation, whereas late-stage amoeba-adapted isolates remained in higher numbers 24 h after ingestion by amoeba. In addition, there was reduced uptake by macrophage of amoeba-adapted isolates and reduced uptake by human neutrophils as well as increased survival in the presence of neutrophils. Our findings indicate that the selection imposed by amoeba on P. aeruginosa resulted in reduced virulence over time. Importantly, the genetic and phenotypic traits possessed by late-stage amoeba-adapted P. aeruginosa are similar to what is observed for isolates obtained from chronic cystic fibrosis infections. This notable overlap in adaptation to different host types suggests similar selection pressures among host cell types.Author SummaryPseudomonas aeruginosa is an opportunistic pathogen that causes both acute infections in plants and animals, including humans and also causes chronic infections in immune compromised and cystic fibrosis patients. This bacterium is commonly found in soils and water where bacteria are constantly under threat of being consumed by the bacterial predators, protozoa. To escape being killed, bacteria have evolved a suite of mechanisms that protect them from being consumed or digested. Here we examined the effect of long-term predation on the genotype and phenotypes expressed by P. aeruginosa. We show that long-term co-incubation with protozoa resulted in mutations in the bacteria that made them less pathogenic. This is particularly interesting as we see similar mutations arise in bacteria associated with chronic infections. Thus, predation by protozoa and long term colonization of the human host may represent similar environments that select for similar losses in gene functions.


Author(s):  
Wai Leong ◽  
Wee Han Poh ◽  
Jonathan Williams ◽  
Carla Lutz ◽  
M. Mozammel Hoque ◽  
...  

The opportunistic pathogen Pseudomonas aeruginosa , is ubiquitous in the environment, and in humans is capable of causing acute or chronic infections. In the natural environment, predation by bacterivorous protozoa represents a primary threat to bacteria. Here, we determined the impact of long-term exposure of P. aeruginosa to predation pressure. P. aeruginosa persisted when co-incubated with the bacterivorous Acanthamoeba castellanii for extended periods and produced genetic and phenotypic variants. Sequencing of late-stage amoeba-adapted P. aeruginosa isolates demonstrated single nucleotide polymorphisms within genes that encode known virulence factors and this correlated with a reduction in expression of virulence traits. Virulence towards the nematode, Caenorhabditis elegans , was attenuated in late-stage amoeba-adapted P. aeruginosa compared to early-stage amoeba-adapted and non-adapted counterparts. Further, late-stage amoeba-adapted P. aeruginosa showed increased competitive fitness and enhanced survival in amoeba as well as in macrophage and neutrophils. Interestingly, our findings indicate that the selection imposed by amoeba resulted in P. aeruginosa isolates with reduced virulence and enhanced fitness, similar to those recovered from chronic cystic fibrosis infections. Thus, predation by protozoa and long-term colonization of the human host may represent similar environments that select for similar losses of gene function. Importance Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute infections in plants and animals, including humans, and chronic infections in immunocompromised and cystic fibrosis patients. This bacterium is commonly found in soils and water where bacteria are constantly under threat of being consumed by bacterial predators, e.g. protozoa. To escape being killed, bacteria have evolved a suite of mechanisms that protect them from being consumed or digested. Here, we examine the effect of long-term predation on the genotypes and phenotypes expressed by P. aeruginosa . We show that long term co-incubation with protozoa resulted in mutations that resulted in P. aeruginosa becoming less pathogenic. This is particularly interesting as we see similar mutations arise in bacteria associated with chronic infections. Importantly, the genetic and phenotypic traits possessed by late-stage amoeba-adapted P. aeruginosa are similar to what is observed for isolates obtained from chronic cystic fibrosis infections. This notable overlap in adaptation to different host types suggests similar selection pressures amongst host cell types as well as similar adaptation strategies.


Sign in / Sign up

Export Citation Format

Share Document