scholarly journals ANALYSIS AND IMPLEMENTATION OF CRYPTOGRAPHIC HASH FUNCTIONS IN PROGRAMMABLE LOGIC DEVICES / KRIPTOGRAFINIŲ MAIŠOS FUNKCIJŲ ĮGYVENDINIMO PROGRAMUOJAMOSIOS LOGIKOS LUSTUOSE TYRIMAS

2016 ◽  
Vol 8 (3) ◽  
pp. 321-326
Author(s):  
Tautvydas Brukštus

In this day’s world, more and more focused on data protection. For data protection using cryptographic science. It is also important for the safe storage of passwords for this uses a cryptographic hash function. In this article has been selected the SHA-256 cryptographic hash function to implement and explore, based on fact that it is now a popular and safe. SHA-256 cryptographic function did not find any theoretical gaps or conflict situations. Also SHA-256 cryptographic hash function used cryptographic currencies. Currently cryptographic currency is popular and their value is high. For the measurements have been chosen programmable logic integrated circuits as they less efficiency then ASIC. We chose Altera Corporation produced prog-rammable logic integrated circuits. Counting speed will be investigated by three programmable logic integrated circuit. We will use programmable logic integrated circuits belong to the same family, but different generations. Each programmable logic integrated circuit made using different dimension technology. Choosing these programmable logic integrated circuits: EP3C16, EP4CE115 and 5CSEMA5F31. To compare calculations perfor-mances parameters are provided in the tables and graphs. Research show the calculation speed and stability of different programmable logic circuits. Vis daugiau dėmesio skiriama duomenų apsaugai – duomenų apsaugai skirta net atskira kriptografijos mokslo šaka. Taip pat yra svarbi slaptažodžių sauga, kurioje naudojamos kriptografinės maišos funkcijos. Darbe parinkta įgyvendinimui ir ištirta šiuo metu populiari bei saugi SHA-2 kriptografinė maišos funkcija. Ji naudojama kriptografinėse valiutose. SHA-2 kriptografinės funkcijos analizės metu nepavyko rasti teorinių spragų ar kolizijos atvejų. Tyrimams pasirinkti Altera programuojamos logikos integriniai grandynai, kurie efektyvumu nusileidžia tik specializuotiems integriniams grandynams. Skaičiavimo sparta ir stabilumas buvo tiriama trijuose programuojamos logikos integrinuose grandynuose, priklausančiuose tai pačiai šeimai ir pagamintais skirtingų kartų technologijomis – naudojant 65 nm, 60 nm ir 28 nm KMOP technologijas. Tirtų grandynų kodiniai žymenys EP3C16, EP4CE115 ir 5CSEMA5F31.

2010 ◽  
Vol 23 (3) ◽  
pp. 357-366
Author(s):  
Miodrag Milic ◽  
Vojin Senk

In this paper we present results of uniform logical cryptanalysis method applied to cryptographic hash function CubeHash. During the last decade, some of the most popular cryptographic hash functions were broken. Therefore, in 2007, National Institute of Standards and Technology (NIST), announced an international competition for a new Hash Standard called SHA-3. Only 14 candidates passed first two selection rounds and CubeHash is one of them. A great effort is made in their analysis and comparison. Uniform logical cryptanalysis presents an interesting method for this purpose. Universal, adjustable to almost any cryptographic hash function, very fast and reliable, it presents a promising method in the world of cryptanalysis.


2021 ◽  
Vol 295 (2) ◽  
pp. 35-39
Author(s):  
I. MANULIAK ◽  
◽  
S. MELNYCHUK ◽  
S. VASCHYSHAK ◽  
S. RUDAK ◽  
...  

The use of modern hardware platforms in the development of computer system components, including digital signal processing, allows to describe circuit solutions using specialized languages such as AlteraHDL, VHDL, Verilog, etc. One of the options for using the resources of programmable logic integrated circuits is to create digital components of signal pre-processing, in particular in information and measurement channels. The application of this approach is due to the presence of various distortions that lead to information and accuracy loss. Another problem is the need to preserve the information performance of such information and measurement channels. It is common to use analog implementations of signal pre-processing methods, in particular different types filters. In this case, the implementation of pre-processing methods at the hardware level will provide the appropriate processing speed at insignificant hardware costs. The paper proposes the implementation of the algorithm for processing information and measurement signals using the sliding median method, implemented on a programmable logic integrated circuit. Based on the simulation in a numerical experiment, the efficiency of using such a method is shown in a relatively simple implementation scheme on the FPGA platform. In fact, the pyramidal scheme of conditional constructions provides a simple description of the logical scheme by means of the Altera HDL language, and also allows to reduce the number of comparison operations. The proposed algorithm does not require complex hardware resources, which allows you to effectively involve typical circuit solutions.


Author(s):  
Martin Steinebach ◽  
Sebastian Lutz ◽  
Huajian Liu

Within a forensic examination of a computer for illegal image content, robust hashing can be used to detect images even after they have been altered. Here the perceptible properties of an image are used to create the hash values.Whether an image has the same content is determined by a distance function. Cryptographic hash functions, on the other hand, create a unique bit-sensitive value. With these, no similarity measurement is possible, since only with exact agreement a picture is found. A minimal change in the image results in a completely different cryptographic hash value. However, the robust hashes have an big disadvantage: hash values can reveal something about the structure of the picture. This results in a data protection leak. The advantage of a cryptographic hash function is in turn that its values do not allow any conclusions about the structure of an image. The aim of this work is to develop a procedure for which combines the advantages of both hashing functions.


2009 ◽  
Vol 1 (1) ◽  
pp. 75-81
Author(s):  
Muhammad Irmansyah

In middle 1990, electronics industry had evolution in personal Computer, telephone cellular and high speed data communication equipment. To follow this development, electronics companies have designed and produce new product. One of these innovations is Programmable Logic Devices (PLD) technology. It is a technology to change function of IC digital logic using programming. Many of Programmable Logic Device (PLD) can be used to programming logic using single chip of integrated circuit (IC). Programmable Logic Devices (PLD) technology is applied using IC PAL 22V10 to design basic logic gate AND, OR, NOT and combinational logic gate NAND and NOR.


2009 ◽  
Vol 1 (2) ◽  
pp. 13-18
Author(s):  
Muhammad Irmansyah

In middle 1990, electronics industry had the evolution of personal Computer, telephone cellular and high speed data communication equipment. To follow this development, electronics companies have designed and produce new product. One of these innovations is Programmable Logic Devices (PLD) technology. It is a technology to change function of IC digital logic using programming. Many of Programmable Logic Device (PLD) can be used to programming logic using single chip of integrated circuit (IC). Programmable Logic Devices (PLD) technology is applied using IC PAL 22V10 to design multiplexer 4 input 1 output and 2 selector.


2019 ◽  
Vol 1 ◽  
pp. 125-133 ◽  
Author(s):  
Jacek Tchórzewski ◽  
Agnieszka Jakóbik

The paper presents a theoretical introduction to the cryptographic hash function theory and a statistical experimental analysis of selected hash functions. The definition of hash functions, differences between them, their strengths and weaknesses are explained as well. Different hash function types, classes and parameters are described. The features of hash functions are analyzed by performing statistical analysis. Experimental analysis is performed for three certified hash functions: SHA1-160, SHA2-512 and SHA3-512. Such an analysis helps understand the behavior of cryptographic hash functions and may be very helpful for comparing the security level of the hashing method selected. The tests may serve as a basis for examination of each newly proposed hash function. Additionally, the analysis may be harness as a method for comparing future proposals with the existing functions.


10.28945/2154 ◽  
2015 ◽  
Author(s):  
Segun Adebisi Ojo ◽  
Aderonke Favour-Bethy Thompson ◽  
Mary O Iyare ◽  
Boniface Kayode Alese

The “information age” as often referred to the modern society, has become heavily dependent on information systems. As this dependency increases, the threat to information security has also gained ground. Societies need to cater for the security of information, and this has led to the development of different information security techniques most notable of which is cryptography. Cryptographic Hash functions are used to achieve a number of security goals like authenticity, digital signatures, pseudo-random number generation, digital steganography, digital time stamping. The strength of a cryptographic hash function can be summarized into its vulnerability to attack and computational time. This work therefore, reviews existing standard cryptographic hash functions, their construction and their application areas. The secured hash function (SHA) was selected and implemented based on its comparative worth over others. The implemented cryptographic hash function is evaluated for performance using a cryptographic evaluation standard.


2019 ◽  
Vol 8 (4) ◽  
pp. 5568-5574

Cryptographic hash functions are used in many applications. One important application is to ensure data integrity. Although there are many different types of hashing algorithms, MD5 is widely used to ensure data integrity in digital evidence. However, a weakness, where collisions can occur, has been found in the MD5 algorithm. With regards to digital evidence, this is a big issue. The integrity of the digital evidence becomes questionable due to collisions and hence it is not admissible in court. Many methods were used to find collisions, such as the Chosen-Prefix Collision and researchers have been improving collision finding algorithms. This paper concentrates on reducing the chances of collision by chopping the last 16 bits of the MD5 algorithm and injecting timestamp into the chopped parts. Experiments are performed to test this algorithm and the results show that the time taken to find collisions is longer using the MD5 with an injected timestamp. The chopping construction and the timestamp disrupt the iterative property of the hash function thus when dealing with digital evidence, there are less chances of hash collision and therefore the probability of the admissibility of the digital evidence in court is higher


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
N. David Theodore ◽  
Donald Y.C Lie ◽  
J. H. Song ◽  
Peter Crozier

SiGe is being extensively investigated for use in heterojunction bipolar-transistors (HBT) and high-speed integrated circuits. The material offers adjustable bandgaps, improved carrier mobilities over Si homostructures, and compatibility with Si-based integrated-circuit manufacturing. SiGe HBT performance can be improved by increasing the base-doping or by widening the base link-region by ion implantation. A problem that arises however is that implantation can enhance strain-relaxation of SiGe/Si.Furthermore, once misfit or threading dislocations result, the defects can give rise to recombination-generation in depletion regions of semiconductor devices. It is of relevance therefore to study the damage and anneal behavior of implanted SiGe layers. The present study investigates the microstructural behavior of phosphorus implanted pseudomorphic metastable Si0.88Ge0.12 films on silicon, exposed to various anneals.Metastable pseudomorphic Si0.88Ge0.12 films were grown ~265 nm thick on a silicon wafer by molecular-beam epitaxy. Pieces of this wafer were then implanted at room temperature with 100 keV phosphorus ions to a dose of 1.5×1015 cm-2.


Sign in / Sign up

Export Citation Format

Share Document