scholarly journals An Advanced Educational Tool for Digital Forensic Engineering

Author(s):  
Primož Cigoj ◽  
Borka Jerman Blažič

This paper presents a novel approach to education in the area of digital forensics based on a multi-platform cloud-computer infrastructure and an innovative computer based tool. The tool is installed and available through the cloud-based infrastructure of the Dynamic Forensic Education Alliance. Cloud computing provides an efficient mechanism for a wide range of services that offer real-life environments for teaching and training cybersecurity and digital forensics. The cloud-based infrastructure, the virtualized environment and the developed educational tool enable the construction of a dynamic e-learning environment making the training very close to reality and to real-life situations. The paper presents the Dynamic Forensic Digital tool named EduFors and describes the different levels of college and university education where the tool is introduced and used in the training of future investigators of cybercrime events.

2020 ◽  
Vol 8 (2) ◽  
pp. 69-76 ◽  
Author(s):  
Gulbir Singh ◽  
Vivek Bhatnagar ◽  
Rajeev Gupta ◽  
Gautam Kumar

Purpose of Study: The purpose of the study is to carry out the comparison of traditional learning and e-learning with reference to university education. Methodology: A comparative analysis method that has been selected to fulfill the purpose of the study. The research data has been collected by various sources internet, previous research studies published in the Journal, universities which offer different technical and nontechnical programs .and further analyzed by in-depth understanding approach. Result: The outcome of this study will show the effect of e-learning in the current era. As we have compared e-learning with traditional learning and the result shows us that e-learning has filled the gap between the universities and the real-life industries' demands. Main finding: The result of this study showed that e-learning is the need of the present era in order to fulfill the gap between the universities and the real-life industries' demands. Additionally, e-learning based courses will have more impact and provide more skill and exposure to students as compared to traditional learning mode. Implications/Applications: This article can help the different universities and students to introduce more e-learning courses in their curriculum and they can fill the real-time industries' demands. Novelty/originality of the study: Our research can ensure that e-learning has a huge impact on our students and can help to increase the skills and exposure of them according to the current demands.


GIS Business ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. 21-28
Author(s):  
Abasiama G. Akpan ◽  
Chris Eriye Tralagba

Electronic learning or online learning is a part of recent education which is dramatically used in universities all over the world. As well as the use and integration of e-learning is at the crucial stage in all developing countries. It is the most significant part of education that enhances and improves the educational system. This paper is to examine the hindrances that influence e-learning in Nigerian university system. In order to have an inclusive research, a case study research was performed in Evangel University, Akaeze, southeast of Nigeria. The paper demonstrates similar hindrances on country side. This research is a blend of questionnaires and interviews, the questionnaires was distributed to lecturers and an interview was conducted with management and information technology unit. Research had shown the use of e-learning in university education which has influenced effectively and efficiently the education system and that the University education in Nigeria is at the crucial stage of e-learning. Hence, some of the hindrances are avoiding unbeaten integration of e-learning. The aim of this research is to unravel the barriers that impede the integration of e-learning in universities in Nigeria. Nevertheless, e-learning has modified the teaching and learning approach but integration is faced with many challenges in Nigerian University.


Author(s):  
Zlata Vasileva

The relevance of the topic is related to the importance of humanitarian education for the formation of worldview and spiritual and moral foundations of the personality. The need for humanistic and humanitarian orientation of University education is justified by many pedagogues. Universities of the MIA of Russia provide students with the opportunity to master a wide range of Humanities. The article presents the results of a study that developed a system of Humanities that affect the spiritual and moral development of students. In the course of the analysis, the worldview and psychological and pedagogical blocks of Humanities were identified, and the number of hours for each course of study was indicated. In addition, the article shows the interdisciplinary connections of Humanities that integrate knowledge on the spiritual and moral sphere of personal development. There are four thematic modules of Humanities: “Man”, “Society”, “Activity”, “Universe”. The analysis of the interdisciplinary interaction of the selected thirteen Humanities is carried out. Examples of forms and methods of formative work are shown, according to the curricula for the mastering these disciplines. The topics, their content, forming competencies, forms and methods of experimental work are correlated, which allows us to clearly trace the interdisciplinary connections.


2020 ◽  
Vol 7 (1) ◽  
pp. 9 ◽  
Author(s):  
Shelina Bhamani ◽  
Areeba Zainab Makhdoom ◽  
Vardah Bharuchi ◽  
Nasreen Ali ◽  
Sidra Kaleem ◽  
...  

<p align="center"><em>The widespread prevalence of COVID-19 pandemic has affected academia and parents alike. Due to the sudden closure of schools, students are missing social interaction which is vital for better learning and grooming while most schools have started online classes. This has become a tough routine for the parents working online at home since they have to ensure their children’s education. The study presented was designed to explore the experiences of home learning in times of COVID-19. A descriptive qualitative study was planned to explore the experiences of parents about home learning and management during COVID-19 to get an insight into real-life experiences.  Purposive sampling technique was used for data collection.  Data were collected from 19 parents falling in the inclusion criteria. Considering the lockdown problem, the data were collected via Google docs form with open-ended questions related to COVID-19 and home learning. Three major themes emerged after the data analysis: impact of COVID on children learning; support given by schools; and strategies used by caregivers at home to support learning. It was analyzed that the entire nation and academicians around the world have come forward to support learning at home offering a wide range of free online avenues to support parents to facilitate home-learning. Furthermore, parents too have adapted quickly to address the learning gap that have emerged in their children’s learning in these challenging times. Measures should be adopted to provide essential learning skills to children at home. Centralized data dashboards and educational technology may be used to keep the students, parents and schools updated.</em></p>


2021 ◽  
Vol 5 (EICS) ◽  
pp. 1-23
Author(s):  
Markku Laine ◽  
Yu Zhang ◽  
Simo Santala ◽  
Jussi P. P. Jokinen ◽  
Antti Oulasvirta

Over the past decade, responsive web design (RWD) has become the de facto standard for adapting web pages to a wide range of devices used for browsing. While RWD has improved the usability of web pages, it is not without drawbacks and limitations: designers and developers must manually design the web layouts for multiple screen sizes and implement associated adaptation rules, and its "one responsive design fits all" approach lacks support for personalization. This paper presents a novel approach for automated generation of responsive and personalized web layouts. Given an existing web page design and preferences related to design objectives, our integer programming -based optimizer generates a consistent set of web designs. Where relevant data is available, these can be further automatically personalized for the user and browsing device. The paper includes presentation of techniques for runtime adaptation of the designs generated into a fully responsive grid layout for web browsing. Results from our ratings-based online studies with end users (N = 86) and designers (N = 64) show that the proposed approach can automatically create high-quality responsive web layouts for a variety of real-world websites.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Spyridoula Vazou ◽  
Collin A. Webster ◽  
Gregory Stewart ◽  
Priscila Candal ◽  
Cate A. Egan ◽  
...  

Abstract Background/Objective Movement integration (MI) involves infusing physical activity into normal classroom time. A wide range of MI interventions have succeeded in increasing children’s participation in physical activity. However, no previous research has attempted to unpack the various MI intervention approaches. Therefore, this study aimed to systematically review, qualitatively analyze, and develop a typology of MI interventions conducted in primary/elementary school settings. Subjects/Methods Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to identify published MI interventions. Irrelevant records were removed first by title, then by abstract, and finally by full texts of articles, resulting in 72 studies being retained for qualitative analysis. A deductive approach, using previous MI research as an a priori analytic framework, alongside inductive techniques were used to analyze the data. Results Four types of MI interventions were identified and labeled based on their design: student-driven, teacher-driven, researcher-teacher collaboration, and researcher-driven. Each type was further refined based on the MI strategies (movement breaks, active lessons, other: opening activity, transitions, reward, awareness), the level of intrapersonal and institutional support (training, resources), and the delivery (dose, intensity, type, fidelity). Nearly half of the interventions were researcher-driven, which may undermine the sustainability of MI as a routine practice by teachers in schools. An imbalance is evident on the MI strategies, with transitions, opening and awareness activities, and rewards being limitedly studied. Delivery should be further examined with a strong focus on reporting fidelity. Conclusions There are distinct approaches that are most often employed to promote the use of MI and these approaches may often lack a minimum standard for reporting MI intervention details. This typology may be useful to effectively translate the evidence into practice in real-life settings to better understand and study MI interventions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shu-Bo Chen ◽  
Saima Rashid ◽  
Muhammad Aslam Noor ◽  
Zakia Hammouch ◽  
Yu-Ming Chu

Abstract Inequality theory provides a significant mechanism for managing symmetrical aspects in real-life circumstances. The renowned distinguishing feature of integral inequalities and fractional calculus has a solid possibility to regulate continuous issues with high proficiency. This manuscript contributes to a captivating association of fractional calculus, special functions and convex functions. The authors develop a novel approach for investigating a new class of convex functions which is known as an n-polynomial $\mathcal{P}$ P -convex function. Meanwhile, considering two identities via generalized fractional integrals, provide several generalizations of the Hermite–Hadamard and Ostrowski type inequalities by employing the better approaches of Hölder and power-mean inequalities. By this new strategy, using the concept of n-polynomial $\mathcal{P}$ P -convexity we can evaluate several other classes of n-polynomial harmonically convex, n-polynomial convex, classical harmonically convex and classical convex functions as particular cases. In order to investigate the efficiency and supremacy of the suggested scheme regarding the fractional calculus, special functions and n-polynomial $\mathcal{P}$ P -convexity, we present two applications for the modified Bessel function and $\mathfrak{q}$ q -digamma function. Finally, these outcomes can evaluate the possible symmetric roles of the criterion that express the real phenomena of the problem.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Bo Liu ◽  
Haowen Zhong ◽  
Yanshan Xiao

Multi-view classification aims at designing a multi-view learning strategy to train a classifier from multi-view data, which are easily collected in practice. Most of the existing works focus on multi-view classification by assuming the multi-view data are collected with precise information. However, we always collect the uncertain multi-view data due to the collection process is corrupted with noise in real-life application. In this case, this article proposes a novel approach, called uncertain multi-view learning with support vector machine (UMV-SVM) to cope with the problem of multi-view learning with uncertain data. The method first enforces the agreement among all the views to seek complementary information of multi-view data and takes the uncertainty of the multi-view data into consideration by modeling reachability area of the noise. Then it proposes an iterative framework to solve the proposed UMV-SVM model such that we can obtain the multi-view classifier for prediction. Extensive experiments on real-life datasets have shown that the proposed UMV-SVM can achieve a better performance for uncertain multi-view classification in comparison to the state-of-the-art multi-view classification methods.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Vincent Vandewalle ◽  
Alexandre Caron ◽  
Coralie Delettrez ◽  
Renaud Périchon ◽  
Sylvia Pelayo ◽  
...  

Abstract Background Usability testing of medical devices are mandatory for market access. The testings’ goal is to identify usability problems that could cause harm to the user or limit the device’s effectiveness. In practice, human factor engineers study participants under actual conditions of use and list the problems encountered. This results in a binary discovery matrix in which each row corresponds to a participant, and each column corresponds to a usability problem. One of the main challenges in usability testing is estimating the total number of problems, in order to assess the completeness of the discovery process. Today’s margin-based methods fit the column sums to a binomial model of problem detection. However, the discovery matrix actually observed is truncated because of undiscovered problems, which corresponds to fitting the marginal sums without the zeros. Margin-based methods fail to overcome the bias related to truncation of the matrix. The objective of the present study was to develop and test a matrix-based method for estimating the total number of usability problems. Methods The matrix-based model was based on the full discovery matrix (including unobserved columns) and not solely on a summary of the data (e.g. the margins). This model also circumvents a drawback of margin-based methods by simultaneously estimating the model’s parameters and the total number of problems. Furthermore, the matrix-based method takes account of a heterogeneous probability of detection, which reflects a real-life setting. As suggested in the usability literature, we assumed that the probability of detection had a logit-normal distribution. Results We assessed the matrix-based method’s performance in a range of settings reflecting real-life usability testing and with heterogeneous probabilities of problem detection. In our simulations, the matrix-based method improved the estimation of the number of problems (in terms of bias, consistency, and coverage probability) in a wide range of settings. We also applied our method to five real datasets from usability testing. Conclusions Estimation models (and particularly matrix-based models) are of value in estimating and monitoring the detection process during usability testing. Matrix-based models have a solid mathematical grounding and, with a view to facilitating the decision-making process for both regulators and device manufacturers, should be incorporated into current standards.


Sign in / Sign up

Export Citation Format

Share Document