scholarly journals Plasma-based Fluorine Ion Implantation into Dental Materials for Inhibition of Bacterial Adhesion

2006 ◽  
Vol 25 (4) ◽  
pp. 684-692 ◽  
Author(s):  
Kenji ARITA ◽  
Yukari SHINONAGA ◽  
Mizuho NISHINO
Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4879
Author(s):  
Seiji Ban

Various types of zirconia are widely used for the fabrication of dental implant superstructures and fixtures. Zirconia–alumina composites, such as ATZ and NanoZR, are adequate for implant fixtures because they have excellent mechanical strength in spite of insufficient esthetic properties. On the other hand, yttria-stabilized zirconia has been used for implant superstructures because of sufficient esthetic properties. They are classified to 12 types with yttria content, monochromatic/polychromatic, uniform/hybrid composition, and monolayer/multilayer. Zirconia with a higher yttria content has higher translucency and lower mechanical strength. Fracture strength of superstructures strongly depends on the strength on the occlusal contact region. It suggests that adequate zirconia should be selected as the superstructure crown, depending on whether strength or esthetics is prioritized. Low temperature degradation of zirconia decreases with yttria content, but even 3Y zirconia has a sufficient durability in oral condition. Although zirconia is the hardest dental materials, zirconia restorative rarely subjects the antagonist teeth to occlusal wear when it is mirror polished. Furthermore, zirconia has less bacterial adhesion and better soft tissue adhesion when it is mirror polished. This indicates that zirconia has advantageous for implant superstructures. As implant fixtures, zirconia is required for surface modification to obtain osseointegration to bone. Various surface treatments, such as roughening, surface activation, and coating, has been developed and improved. It is concluded that an adequately selected zirconia is a suitable material as implant superstructures and fixtures because of mechanically, esthetically, and biologically excellent properties.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Marta Alvarez-Escobar ◽  
Sidónio C. Freitas ◽  
Derek Hansford ◽  
Fernando J. Monteiro ◽  
Alejandro Pelaez-Vargas

Introduction. Microfabrication offers opportunities to study surface concepts focused to reduce bacterial adhesion on implants using human minimally invasive rapid screening (hMIRS). Wide information is available about cell/biomaterial interactions using eukaryotic and prokaryotic cells on surfaces of dental materials with different topographies, but studies using human being are still limited. Objective. To evaluate a synergy of microfabrication and hMIRS to study the bacterial adhesion on micropatterned surfaces for dental materials. Materials and Methods. Micropatterned and flat surfaces on biomedical PDMS disks were produced by soft lithography. The hMIRS approach was used to evaluate the total oral bacterial adhesion on PDMS surfaces placed in the oral cavity of five volunteers (the study was approved by the University Ethical Committee). After 24 h, the disks were analyzed using MTT assay and light microscopy. Results. In the present pilot study, microwell structures were microfabricated on the PDMS surface via soft lithography with a spacing of 5 µm. Overall, bacterial adhesion did not significantly differ between the flat and micropatterned surfaces. However, individual analysis of two subjects showed greater bacterial adhesion on the micropatterned surfaces than on the flat surfaces. Significance. Microfabrication and hMIRS might be implemented to study the cell/biomaterial interactions for dental materials.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 235
Author(s):  
Klemen Bohinc ◽  
Erna Tintor ◽  
Davor Kovačević ◽  
Rajko Vidrih ◽  
Anamarija Zore ◽  
...  

Dental restorations need to reproduce the aspect of the natural teeth of the patient, and must be non-toxic, biocompatible, and have good mechanical properties so that they can last for longer. The aim of this study was to determine the extent of bacterial adhesion of Streptococcus mutans on four different dental material surfaces, i.e., two glass–ionomer cements (Fuji conventional and Fuji hybrid) and two ceramic composites (Micro hybrid composite and Nano hybrid composite). To understand the bacterial adhesion on these four different dental materials, various surface properties were measured: roughness, contact angle, CIE color parameters and zeta potential. We found that the greatest adhesion extent was obtained for the Nano hybrid composite surface. The pronounced adhesion is the interplay between the relatively high roughness and hydrophilicity of the Nano hybrid composite surface. Color changes upon immersing ceramic composites in red wine and black tea proved that both beverages adhered to them. Black tea adhered more intensively than wine, and showed a higher inhibitory effect on the growth of Streptococcus mutans and Staphylococcus aureus.


Author(s):  
P. Ling ◽  
R. Gronsky ◽  
J. Washburn

The defect microstructures of Si arising from ion implantation and subsequent regrowth for a (111) substrate have been found to be dominated by microtwins. Figure 1(a) is a typical diffraction pattern of annealed ion-implanted (111) Si showing two groups of extra diffraction spots; one at positions (m, n integers), the other at adjacent positions between <000> and <220>. The object of the present paper is to show that these extra reflections are a direct consequence of the microtwins in the material.


Author(s):  
E.G. Bithell ◽  
W.M. Stobbs

It is well known that the microstructural consequences of the ion implantation of semiconductor heterostructures can be severe: amorphisation of the damaged region is possible, and layer intermixing can result both from the original damage process and from the enhancement of the diffusion coefficients for the constituents of the original composition profile. A very large number of variables are involved (the atomic mass of the target, the mass and energy of the implant species, the flux and the total dose, the substrate temperature etc.) so that experimental data are needed despite the existence of relatively well developed models for the implantation process. A major difficulty is that conventional techniques (e.g. electron energy loss spectroscopy) have inadequate resolution for the quantification of any changes in the composition profile of fine scale multilayers. However we have demonstrated that the measurement of 002 dark field intensities in transmission electron microscope images of GaAs / AlxGa1_xAs heterostructures can allow the measurement of the local Al / Ga ratio.


Author(s):  
C. Hayzelden ◽  
J. L. Batstone

Epitaxial reordering of amorphous Si(a-Si) on an underlying single-crystal substrate occurs well below the melt temperature by the process of solid phase epitaxial growth (SPEG). Growth of crystalline Si(c-Si) is known to be enhanced by the presence of small amounts of a metallic phase, presumably due to an interaction of the free electrons of the metal with the covalent Si bonds near the growing interface. Ion implantation of Ni was shown to lower the crystallization temperature of an a-Si thin film by approximately 200°C. Using in situ transmission electron microscopy (TEM), precipitates of NiSi2 formed within the a-Si film during annealing, were observed to migrate, leaving a trail of epitaxial c-Si. High resolution TEM revealed an epitaxial NiSi2/Si(l11) interface which was Type A. We discuss here the enhanced nucleation of c-Si and subsequent silicide-mediated SPEG of Ni-implanted a-Si.Thin films of a-Si, 950 Å thick, were deposited onto Si(100) wafers capped with 1000Å of a-SiO2. Ion implantation produced sharply peaked Ni concentrations of 4×l020 and 2×l021 ions cm−3, in the center of the films.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Sign in / Sign up

Export Citation Format

Share Document